94 lines
2.6 KiB
Bash
94 lines
2.6 KiB
Bash
|
#!/bin/bash
|
||
|
export CUDA_DEVICE_MAX_CONNECTIONS=1
|
||
|
DIR=`pwd`
|
||
|
|
||
|
# Guide:
|
||
|
# This script supports distributed training on multi-gpu workers (as well as single-worker training).
|
||
|
# Please set the options below according to the comments.
|
||
|
# For multi-gpu workers training, these options should be manually set for each worker.
|
||
|
# After setting the options, please run the script on each worker.
|
||
|
|
||
|
# Number of GPUs per GPU worker
|
||
|
GPUS_PER_NODE=$(python -c 'import torch; print(torch.cuda.device_count())')
|
||
|
|
||
|
# Number of GPU workers, for single-worker training, please set to 1
|
||
|
NNODES=${NNODES:-1}
|
||
|
|
||
|
# The rank of this worker, should be in {0, ..., WORKER_CNT-1}, for single-worker training, please set to 0
|
||
|
NODE_RANK=${NODE_RANK:-0}
|
||
|
|
||
|
# The ip address of the rank-0 worker, for single-worker training, please set to localhost
|
||
|
MASTER_ADDR=${MASTER_ADDR:localhost}
|
||
|
|
||
|
# The port for communication
|
||
|
MASTER_PORT=${MASTER_PORT:-6001}
|
||
|
|
||
|
MODEL="Qwen/Qwen-7B-Chat-Int4" # Set the path if you do not want to load from huggingface directly
|
||
|
# ATTENTION: specify the path to your training data, which should be a json file consisting of a list of conversations.
|
||
|
# See the section for finetuning in README for more information.
|
||
|
DATA="path_to_data"
|
||
|
|
||
|
function usage() {
|
||
|
echo '
|
||
|
Usage: bash finetune/finetune_qlora_ds.sh [-m MODEL_PATH] [-d DATA_PATH]
|
||
|
'
|
||
|
}
|
||
|
|
||
|
while [[ "$1" != "" ]]; do
|
||
|
case $1 in
|
||
|
-m | --model )
|
||
|
shift
|
||
|
MODEL=$1
|
||
|
;;
|
||
|
-d | --data )
|
||
|
shift
|
||
|
DATA=$1
|
||
|
;;
|
||
|
-h | --help )
|
||
|
usage
|
||
|
exit 0
|
||
|
;;
|
||
|
* )
|
||
|
echo "Unknown argument ${1}"
|
||
|
exit 1
|
||
|
;;
|
||
|
esac
|
||
|
shift
|
||
|
done
|
||
|
|
||
|
DISTRIBUTED_ARGS="
|
||
|
--nproc_per_node $GPUS_PER_NODE \
|
||
|
--nnodes $NNODES \
|
||
|
--node_rank $NODE_RANK \
|
||
|
--master_addr $MASTER_ADDR \
|
||
|
--master_port $MASTER_PORT
|
||
|
"
|
||
|
|
||
|
# Remember to use --fp16 instead of --bf16 due to autogptq
|
||
|
torchrun $DISTRIBUTED_ARGS finetune.py \
|
||
|
--model_name_or_path $MODEL \
|
||
|
--data_path $DATA \
|
||
|
--fp16 True \
|
||
|
--output_dir output_qwen \
|
||
|
--num_train_epochs 5 \
|
||
|
--per_device_train_batch_size 2 \
|
||
|
--per_device_eval_batch_size 1 \
|
||
|
--gradient_accumulation_steps 8 \
|
||
|
--evaluation_strategy "no" \
|
||
|
--save_strategy "steps" \
|
||
|
--save_steps 1000 \
|
||
|
--save_total_limit 10 \
|
||
|
--learning_rate 3e-4 \
|
||
|
--weight_decay 0.1 \
|
||
|
--adam_beta2 0.95 \
|
||
|
--warmup_ratio 0.01 \
|
||
|
--lr_scheduler_type "cosine" \
|
||
|
--logging_steps 1 \
|
||
|
--report_to "none" \
|
||
|
--model_max_length 512 \
|
||
|
--lazy_preprocess True \
|
||
|
--use_lora \
|
||
|
--q_lora \
|
||
|
--gradient_checkpointing \
|
||
|
--deepspeed finetune/ds_config_zero2.json
|