Witllm/wit/meaning_dataset.py

144 lines
4.4 KiB
Python
Raw Normal View History

2024-03-13 19:41:02 +08:00
import os
import datasets
import torch
import math
import random
from itertools import chain
from typing import Dict, Tuple
from torch.utils.data import ConcatDataset, DataLoader, Dataset, random_split
import numpy as np
class MeaningMap: # 16777216 1048576 8192
def __init__(self, size=1048576, vocab_size=4096, max_subitem=10):
self.size = size
self.vocab_size = vocab_size
self.max_subitem = max_subitem
file = "structured_language_" + str(size) + "_" + str(vocab_size) + "_" + str(max_subitem)
file_start = file + "_start" + ".npy"
file_len = file + "_len" + ".npy"
file_data = file + "_data" + ".npy"
if os.path.exists(file_start) and os.path.exists(file_len) and os.path.exists(file_data):
print("Load from disk cache: " + file)
self.ms_data = np.load(file_data)
self.ms_start = np.load(file_start)
self.ms_len = np.load(file_len)
return None
print("Disk cache miss, build new one.")
mm = np.empty((size, max_subitem), dtype=np.int32)
2024-03-15 11:16:13 +08:00
# total_level = int(math.log(size / vocab_size, max_subitem))
# start = [0]
# end = [vocab_size]
# shift = vocab_size
# for i in range(total_level):
# shift = end[-1]
# start.append(end[-1])
# end.append(shift * self.max_subitem)
# start.append(end[-1])
# end.append(size)
2024-03-13 19:41:02 +08:00
index = np.arange(0, size)
mm = np.random.random((size, max_subitem))
mask_zero = mm.copy()
mask_zero[:, 0] = 0.0
mask_zero.sort(axis=1)
thre = np.random.random((size)).reshape(-1, 1).repeat(max_subitem, axis=1)
mask_zero = mask_zero > thre
item_sum = mm.sum(axis=1)
scale = (index / item_sum).reshape(-1, 1).repeat(max_subitem, axis=1)
mm = mm * scale
mm[mask_zero] = 0
mm[:vocab_size, 0] = np.arange(0, vocab_size)
mm[:vocab_size, 1:] = 0
mm = mm.astype(np.int32)
ms = [] # meaning sequence
ms_start = [] # meaning sequence start
ms_len = [] # meaning sequence length
index = 0
for i in range(self.vocab_size):
ms.append([i])
ms_start.append(index)
ms_len.append(1)
index = index + 1
for i in range(self.vocab_size, size):
m = mm[i]
m = m[m > 0]
ma = []
for newm in m.tolist():
ma = ma + ms[newm]
ms.append(ma)
ms_start.append(index)
ms_len.append(len(ma))
index = index + len(ma)
ms_data = list(chain(*ms))
np.save(file_data, np.array(ms_data).astype(np.int32))
np.save(file_start, np.array(ms_start).astype(np.int32))
np.save(file_len, np.array(ms_len).astype(np.int32))
self.ms_data = ms_data
self.ms_start = ms_start
self.ms_len = ms_len
print("Disk cache build end.")
def GetSequence(self, meaning):
start = self.ms_start[meaning]
len = self.ms_len[meaning]
return self.ms_data[start : start + len]
class MeaningDataset(Dataset):
def __init__(self, start=131072, end=1048576, size=32768, vocab_size=4096, max_subitem=10, seed=42):
self.seed = seed
np.random.seed(seed)
self.size = size
self.mm = MeaningMap(size=end, vocab_size=vocab_size, max_subitem=max_subitem) # 1048576
self.data = []
meanings = np.random.randint(start, end, size=(size))
for m in meanings:
2024-03-15 11:16:13 +08:00
sq = self.mm.GetSequence(m)
if len(sq) > 1:
self.data.append(sq)
left = size - len(self.data)
while True:
if left <= 0:
break
index = np.random.randint(start, end)
sq = self.mm.GetSequence(index)
if len(sq) > 1:
self.data.append(sq)
left = left - 1
2024-03-13 19:41:02 +08:00
def __len__(self):
return self.size
def __getitem__(self, idx):
output = {}
2024-03-14 11:40:26 +08:00
data = torch.tensor(self.data[idx]).long()
2024-03-13 19:41:02 +08:00
output["input_ids"] = data
output["labels"] = data.clone()
output["token_type_ids"] = torch.zeros(data.shape)
return output
if __name__ == "__main__":
md = MeaningDataset(4096, 4100, size=32768)
it = iter(md)
for i in range(10):
daf = next(it)["input_ids"].numpy().tolist()
print(daf)