27 lines
915 B
Python
27 lines
915 B
Python
|
|
from modelscope import AutoModelForCausalLM, AutoTokenizer
|
||
|
|
|
||
|
|
model_name = "Qwen/Qwen3-4B-Instruct-2507-FP8"
|
||
|
|
|
||
|
|
# load the tokenizer and the model
|
||
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||
|
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
|
||
|
|
|
||
|
|
# prepare the model input
|
||
|
|
# prompt = "Give me a short introduction to large language model."
|
||
|
|
prompt = "中国的首都在哪里?"
|
||
|
|
messages = [{"role": "user", "content": prompt}]
|
||
|
|
text = tokenizer.apply_chat_template(
|
||
|
|
messages,
|
||
|
|
tokenize=False,
|
||
|
|
add_generation_prompt=True,
|
||
|
|
)
|
||
|
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
||
|
|
|
||
|
|
# conduct text completion
|
||
|
|
generated_ids = model.generate(**model_inputs, max_new_tokens=16384)
|
||
|
|
output_ids = generated_ids[0][len(model_inputs.input_ids[0]) :].tolist()
|
||
|
|
|
||
|
|
content = tokenizer.decode(output_ids, skip_special_tokens=True)
|
||
|
|
|
||
|
|
print("content:", content)
|