Witllm/unsuper/minist.py

94 lines
2.8 KiB
Python
Raw Normal View History

2024-07-31 22:04:01 +08:00
import torch
import torch.nn as nn
import torch.nn.functional as F # Add this line
import torchvision
import torchvision.transforms as transforms
# Device configuration
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Hyper-parameters
num_epochs = 5
batch_size = 4
learning_rate = 0.001
# Dataset has PILImage images of range [0, 1].
# We transform them to Tensors of normalized range [-1, 1]
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
# CIFAR10: 60000 32x32 color images in 10 classes, with 6000 images per class
train_dataset = torchvision.datasets.CIFAR10(root="./data", train=True, download=True, transform=transform)
test_dataset = torchvision.datasets.CIFAR10(root="./data", train=False, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
class ConvNet(nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
# x = F.relu(self.fc1(x))
x = self.fc1(x)
# x = F.relu(self.fc2(x))
x = self.fc2(x)
x = self.fc3(x)
return x
model = ConvNet().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
# Train the model
n_total_steps = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.to(device)
labels = labels.to(device)
# Forward pass
outputs = model(images)
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i + 1) % 2000 == 0:
print(f"Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.4f}")
print("Finished Training")
# Test the model
with torch.no_grad():
n_correct = 0
n_samples = 0
for images, labels in test_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
# max returns (value ,index)
_, predicted = torch.max(outputs.data, 1)
n_samples += labels.size(0)
n_correct += (predicted == labels).sum().item()
acc = 100.0 * n_correct / n_samples
print(f"Accuracy of the network on the 10000 test images: {acc} %")