Witllm/binary/mnist.py

277 lines
8.0 KiB
Python
Raw Normal View History

2025-05-20 14:07:10 +08:00
import os
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
from torchvision import transforms
from torch.utils.data import DataLoader
import math
import torch.nn.functional as F
import numpy as np
torch.manual_seed(1234)
np.random.seed(1234)
torch.cuda.manual_seed_all(1234)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
2025-05-21 11:29:15 +08:00
# device = "cpu"
# torch.set_num_threads(16)
2025-05-20 14:07:10 +08:00
print(f"Using device: {device}")
transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))] # MNIST数据集的均值和标准差
)
train_dataset = torchvision.datasets.MNIST(root="./data", train=True, download=True, transform=transform)
test_dataset = torchvision.datasets.MNIST(root="./data", train=False, download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=1024, shuffle=False)
def to_binary_tensor(input_tensor, bits):
int_tensor = torch.round(input_tensor).clamp(0, 2**bits - 1).to(torch.int64)
shifts = torch.arange(bits - 1, -1, -1, device=int_tensor.device)
binary_bits = (int_tensor.unsqueeze(-1) >> shifts) & 1
return binary_bits
2025-05-21 11:29:15 +08:00
class Lut(torch.autograd.Function):
# input [batch,count,bits]
# weight [count,2**bits]
2025-05-20 14:07:10 +08:00
@staticmethod
def forward(ctx, input, weight):
batch = input.shape[0]
count = input.shape[1]
bits = input.shape[2]
assert int(math.log2(weight.shape[-1])) == bits
index = 2 ** torch.arange(bits - 1, -1, -1, device=input.device)
x = (input > 0).long()
x = x * index
ind = x.sum(dim=-1)
row_indices = torch.arange(count).unsqueeze(0).expand(batch, -1)
output = weight[row_indices, ind]
ctx.save_for_backward(input, weight, ind)
return output
@staticmethod
def backward(ctx, grad_output):
input, weight, ind = ctx.saved_tensors
grad_input = grad_weight = None
batch = input.shape[0]
count = input.shape[1]
bits = input.shape[2]
if ctx.needs_input_grad[1]:
grad_weight = torch.zeros_like(weight)
ind_p = ind.permute(1, 0)
grad_output_p = grad_output.permute(1, 0)
grad_weight.scatter_add_(1, ind_p, grad_output_p)
if ctx.needs_input_grad[0]:
row_indices = torch.arange(count).unsqueeze(0).expand(batch, -1)
grad_input = grad_output * weight[row_indices, ind]
grad_input = grad_input.unsqueeze(-1).repeat(1, 1, bits)
return grad_input, grad_weight
class SimpleCNN(nn.Module):
def __init__(self):
super(SimpleCNN, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.bn = nn.BatchNorm1d(320 * 4)
self.fc1 = nn.Linear(160, 50)
self.fc2 = nn.Linear(50, 10)
self.pool = nn.MaxPool2d(2)
self.relu = nn.ReLU()
self.weight = nn.Parameter(torch.randn(160, pow(2, 8)))
def forward(self, x):
x = self.relu(self.pool(self.conv1(x)))
x = self.relu((self.conv2(x)))
x = x.view(-1, 320 * 4)
x = self.bn(x)
x = x.view(-1, 160, 8)
2025-05-21 11:29:15 +08:00
x = Lut.apply(x, self.weight)
2025-05-20 14:07:10 +08:00
x = self.relu(self.fc1(x))
x = self.fc2(x)
return x
class LutGroup(nn.Module):
def __init__(self, bits, subbits):
super(LutGroup, self).__init__()
assert (bits % subbits) == 0
2025-05-21 11:29:15 +08:00
self.weight = nn.Parameter(torch.randn(bits, pow(2, subbits)))
2025-05-20 14:07:10 +08:00
self.bits = bits
self.subbits = subbits
def forward(self, x):
2025-05-21 11:29:15 +08:00
batch = x.shape[0]
x = x.view(batch, -1, self.subbits)
x = Lut.apply(x, self.weight)
return x
2025-05-20 14:07:10 +08:00
class LutParallel(nn.Module):
def __init__(self, bits, number):
super(LutParallel, self).__init__()
self.number = number
2025-05-21 11:29:15 +08:00
self.weight = nn.Parameter(torch.randn(number, pow(2, bits)))
2025-05-20 14:07:10 +08:00
def forward(self, x):
2025-05-21 11:29:15 +08:00
x = x.unsqueeze(1).repeat(1, self.number, 1)
x = Lut.apply(x, self.weight)
return x
2025-05-20 14:07:10 +08:00
class SimpleBNN(nn.Module):
def __init__(self):
2025-05-21 11:29:15 +08:00
super(SimpleBNN, self).__init__()
# self.w = nn.Parameter(torch.randn(3, 784 * 8))
# self.b = nn.Parameter(torch.zeros(3, 784 * 8))
self.w = nn.Parameter(torch.randn(3, 784))
self.b = nn.Parameter(torch.zeros(3, 784))
2025-05-20 14:07:10 +08:00
self.lut1 = LutGroup(784 * 8, 8)
2025-05-21 11:29:15 +08:00
self.lut2 = LutGroup(784, 4)
self.lut3 = LutGroup(196, 4)
self.lut4 = LutGroup(49, 7)
self.lut5 = LutParallel(7, 10)
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
self.pool = nn.MaxPool2d(2)
self.relu = nn.ReLU()
2025-05-20 14:07:10 +08:00
def forward(self, x):
batch = x.shape[0]
x = x.view(batch, -1)
# 变换x [-0.5:0.5] 到 0-255然后按照二进制展开成8个值
2025-05-21 11:29:15 +08:00
# x = (x * 256 + 128).clamp(0, 255).to(torch.uint8)
# xx = torch.arange(7, -1, -1).to(x.device)
# bits = (x.unsqueeze(-1) >> xx) & 1
# x = bits.view(batch, -1)
# x = x.float() - 0.5
x = (x > 0).float()
q = x * self.w[0] + self.b[0]
k = x * self.w[1] + self.b[1]
v = x * self.w[2] + self.b[2]
q = q.view(batch, -1, 1)
k = k.view(batch, 1, -1)
v = v.view(batch, -1, 1)
kq = q @ k
kqv = kq @ v
kqv = kqv.view(batch, -1, 8)
x = kqv
#########################
# x = (x > 0) << xx
# x = x.sum(2)
# x = x.view(batch, 1, 28, 28)
# x = (x - 128.0) / 256.0
# x = x.view(batch, 1, 28, 28)
# x = (x > 0).float()
# x = self.relu(self.pool(self.conv1(x)))
# x = self.relu(self.pool((self.conv2(x))))
# x = x.view(-1, 320)
# x = self.relu(self.fc1(x))
# x = self.fc2(x)
#########################
x = (x > 0).float()
x = x.view(batch, 196, 4)
# x = self.lut1(x)
2025-05-20 14:07:10 +08:00
x = self.lut2(x)
2025-05-21 11:29:15 +08:00
x = x.view(-1, 28, 7)
x = x.permute(0, 2, 1)
x = x.reshape(-1, 28 * 7)
2025-05-20 14:07:10 +08:00
x = self.lut3(x)
x = self.lut4(x)
2025-05-21 11:29:15 +08:00
x = self.lut5(x)
2025-05-20 14:07:10 +08:00
return x
torch.autograd.set_detect_anomaly(True)
2025-05-21 11:29:15 +08:00
# model = SimpleCNN().to(device)
model = SimpleBNN().to(device)
2025-05-20 14:07:10 +08:00
criterion = nn.CrossEntropyLoss()
2025-05-21 11:29:15 +08:00
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
2025-05-20 14:07:10 +08:00
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
# output = output * 1.0
# output = F.softmax(output, dim=1)
# print(output.requires_grad)
# print(output.grad_fn)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print(
f"Train Epoch: {epoch} [{batch_idx * len(data)}/{len(train_loader.dataset)} "
f"({100. * batch_idx / len(train_loader):.0f}%)]\tLoss: {loss.item():.6f}"
)
def test():
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += criterion(output, target).item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
accuracy = 100.0 * correct / len(test_loader.dataset)
print(
f"\nTest set: Average loss: {test_loss:.4f}, Accuracy: {correct}/{len(test_loader.dataset)} "
f"({accuracy:.0f}%)\n"
)
for epoch in range(1, 30):
train(epoch)
test()
# torch.save(model.state_dict(), "mnist_cnn.pth")
print("Model saved to mnist_cnn.pth")