Add inference.

This commit is contained in:
Colin 2024-03-20 22:27:28 +08:00
parent b248d1d890
commit 01e5f86e94
4 changed files with 86 additions and 16 deletions

View File

@ -20,27 +20,28 @@ import torchmetrics
# print(output)
target = torch.tensor([0, 1, 2])
preds = torch.tensor([[0.1, 0.9, 0], [0.3, 10.1, 0.6], [0.2, 0.3, 0.9]])
accuracy = torchmetrics.Accuracy(task="multiclass", num_classes=3)
accur = accuracy(preds, target)
# target = torch.tensor([0, 1, 2])
# preds = torch.tensor([[0.1, 0.9, 0], [0.3, 10.1, 0.6], [0.2, 0.3, 0.9]])
# accuracy = torchmetrics.Accuracy(task="multiclass", num_classes=3)
# accur = accuracy(preds, target)
metric_accuracy = torchmetrics.Accuracy(
task="multiclass",
num_classes=4096,
num_classes=4,
)
shift_logits = torch.zeros((16, 2, 4096))
shift_logits[:8, :, 2] = 10.0
shift_labels = (torch.ones((16, 2)) * 2).long()
label_mask = shift_labels != 4096
shift_logits = shift_logits[label_mask]
shift_labels = shift_labels[label_mask]
shift_logits = torch.rand((128, 4))
shift_labels = torch.randint(0, 4, size=(128,))
accur = metric_accuracy(shift_logits, shift_labels)
metric_accuracy.update(shift_logits, shift_labels)
print(accur.numpy())
shift_logits = torch.cat((shift_logits, shift_logits), dim=0)
shift_labels = torch.cat((shift_labels, shift_labels), dim=0)
accur = metric_accuracy(shift_logits, shift_labels)
print(accur.numpy())
print(accur.numpy())
# torch.manual_seed(32)
# criterion = nn.CrossEntropyLoss()

69
wit/inference.py Normal file
View File

@ -0,0 +1,69 @@
import argparse
from functools import partial
from itertools import chain
from typing import Dict, Tuple
import datasets
import pytorch_lightning as pl
import torch
from torch.utils.data import ConcatDataset, DataLoader, Dataset, random_split, Subset
from lit_module import LitModule
from tokenization_qwen import QWenTokenizer
from logger import TBLogger
from special_dataset import SpecialDataset
from meaning_dataset import MeaningDataset, BatchGroupMeaningDataloader
from wit.configuration import ModelConfig
pretrain_model_name = None # "qwen/Qwen-1_8B-Chat"
learning_rate = 0.0001
use_tril_attention_mask = None
precision = "32-true" # "precision:bf16-mixed,16-mixed,32-true"
train_batch_size = 1
val_batch_size = 2
num_proc = 8
max_epochs = 10
strategy = "auto"
resume_from_ckpt_path = None
seed = 42
vocab_size = 16
if __name__ == "__main__":
torch.manual_seed(seed)
config = ModelConfig()
config.vocab_size = vocab_size
config.hidden_size = 1024 # 128 1024 2048 32
config.num_hidden_layers = 1 # 6 12 24 3
config.num_attention_heads = 16 # 8 8 16
lit_module = LitModule(pretrain_model_name, learning_rate, config, use_tril_attention_mask)
tokenizer = QWenTokenizer("./wit_b64.tiktoken", "./wit_char.tiktoken")
level_ratio = 2
start = vocab_size * level_ratio * level_ratio
end = start * level_ratio
size = end * level_ratio
size = 1024
raw_dataset = MeaningDataset(start, end, size, vocab_size, level_ratio)
train_dataset, val_dataset = raw_dataset.Split(0.95)
train_dataloader = BatchGroupMeaningDataloader(train_dataset, train_batch_size)
val_dataloader = BatchGroupMeaningDataloader(val_dataset, val_batch_size)
it = iter(val_dataloader)
batch = next(it)
b, l = lit_module.llm(**batch, return_dict=True)
print("b ")
print(b.detach().cpu().numpy())
# batch["input_ids"] = batch["input_ids"][0:1, :]
batch["input_ids"] = batch["input_ids"][1:2, :]
batch["labels"] = batch["labels"][1:2, :]
s, l = lit_module.llm(**batch, return_dict=True)
print("s ")
print(s.detach().cpu().numpy())
print("data samples:")

View File

@ -188,14 +188,14 @@ class BatchGroupMeaningDataloader(Dataset):
index_shuffle = np.arange(0, index.shape[0])
np.random.shuffle(index_shuffle)
index = index[index_shuffle]
self.index = index
self.indexBatch = index
def __len__(self):
return len(self.index)
return len(self.indexBatch)
def __getitem__(self, idx):
# print("get idx" + str(idx))
return self.dataset.GetBatch(self.index[idx])
return self.dataset.GetBatch(self.indexBatch[idx])
if __name__ == "__main__":

View File

@ -20,7 +20,7 @@ class SpecialDataset(Dataset):
z = torch.zeros([size]).long()
# self.data = torch.stack([a, b, a + b, a + b, a + b * 2]).permute(1, 0)
# self.data = torch.stack([a, b, a, a + b / 4]).permute(1, 0).long()
self.data = torch.stack([a, a + a, a + a]).permute(1, 0).long()
self.data = torch.stack([a, a, a + a]).permute(1, 0).long()
# self.data = torch.stack([a, b, a]).permute(1, 0).long()
# self.data = torch.stack([a, b, a, a + a / 8, a + a / 4, a + a / 2, a + a]).permute(1, 0).long()