use custom vocab_size.
This commit is contained in:
parent
05f17b1221
commit
0ae63298b2
|
@ -1,37 +0,0 @@
|
|||
config: !!python/object:wit.configuration.ModelConfig
|
||||
attn_dropout_prob: 0.0
|
||||
bf16: false
|
||||
chat_format: chatml
|
||||
do_sample: true
|
||||
emb_dropout_prob: 0.0
|
||||
fp16: false
|
||||
fp32: false
|
||||
hidden_size: 128
|
||||
initializer_range: 0.02
|
||||
intermediate_size: 5504
|
||||
layer_norm_epsilon: 1.0e-06
|
||||
max_new_tokens: 512
|
||||
max_position_embeddings: 8192
|
||||
max_window_size: 6144
|
||||
model_max_length: 8192
|
||||
no_bias: true
|
||||
num_attention_heads: 8
|
||||
num_hidden_layers: 6
|
||||
repetition_penalty: 1.1
|
||||
rotary_emb_base: 10000
|
||||
rotary_pct: 1.0
|
||||
scale_attn_weights: true
|
||||
softmax_in_fp32: false
|
||||
tie_word_embeddings: false
|
||||
top_k: 0
|
||||
top_p: 0.8
|
||||
use_cache: true
|
||||
use_cache_kernel: false
|
||||
use_cache_quantization: false
|
||||
use_dynamic_ntk: true
|
||||
use_flash_attn: auto
|
||||
use_logn_attn: true
|
||||
vocab_size: 4096
|
||||
learning_rate: 0.0001
|
||||
pretrained_model_dir: null
|
||||
use_tril_attention_mask: null
|
|
@ -9,7 +9,6 @@ from modeling_wit import QWenLMHeadModel
|
|||
from wit.configuration import ModelConfig
|
||||
|
||||
from transformers import AutoConfig
|
||||
from modelscope import snapshot_download
|
||||
|
||||
|
||||
class LitModule(pl.LightningModule):
|
||||
|
@ -26,6 +25,8 @@ class LitModule(pl.LightningModule):
|
|||
config = ModelConfig()
|
||||
model = QWenLMHeadModel(config)
|
||||
if pretrained_model_dir != None:
|
||||
from modelscope import snapshot_download
|
||||
|
||||
model = model.from_pretrained(snapshot_download(pretrained_model_dir))
|
||||
self.llm = self.register_core_module(model)
|
||||
self.learning_rate = learning_rate
|
||||
|
|
|
@ -10,7 +10,7 @@ from torch.utils.data import ConcatDataset, DataLoader, Dataset, random_split, S
|
|||
|
||||
|
||||
class SpecialDataset(Dataset):
|
||||
def __init__(self, start=1, end=320, size=32768): # 1048576 32768
|
||||
def __init__(self, start=1, end=128, size=32768): # 1048576 32768
|
||||
self.size = size
|
||||
self.features = []
|
||||
a = torch.randint(start, end, [size])
|
||||
|
@ -20,7 +20,7 @@ class SpecialDataset(Dataset):
|
|||
z = torch.zeros([size]).long()
|
||||
# self.data = torch.stack([a, b, a + b, a + b, a + b * 2]).permute(1, 0)
|
||||
# self.data = torch.stack([a, b, a, a + b / 4]).permute(1, 0).long()
|
||||
self.data = torch.stack([a, a + 1, a + 2]).permute(1, 0).long()
|
||||
self.data = torch.stack([a, a + a, a + a]).permute(1, 0).long()
|
||||
# self.data = torch.stack([a, b, a]).permute(1, 0).long()
|
||||
# self.data = torch.stack([a, b, a, a + a / 8, a + a / 4, a + a / 2, a + a]).permute(1, 0).long()
|
||||
|
||||
|
|
|
@ -9,9 +9,7 @@ import torch
|
|||
from torch.utils.data import ConcatDataset, DataLoader, Dataset, random_split, Subset
|
||||
|
||||
from transformers import (
|
||||
BatchEncoding,
|
||||
DefaultDataCollator,
|
||||
PreTrainedTokenizer,
|
||||
set_seed,
|
||||
)
|
||||
from lit_module import LitModule
|
||||
|
@ -33,7 +31,7 @@ max_epochs = 1000
|
|||
strategy = "auto"
|
||||
resume_from_ckpt_path = None
|
||||
seed = 42
|
||||
vocab_size = 4096
|
||||
vocab_size = 256
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
Loading…
Reference in New Issue