Refine train code.

This commit is contained in:
Colin 2025-02-19 19:39:59 +08:00
parent 3feec36059
commit 0b19fd576a
4 changed files with 46 additions and 23 deletions

View File

@ -1,5 +1,3 @@
class ModelConfig:
def __init__(self):
self.vocab_size = 4096
@ -47,11 +45,13 @@ class MeaningDatasetConfig:
self.mask_level = None
self.mask_idx = None
class DatasetConfig:
def __init__(self):
self.name = "meaning"
self.meaning = MeaningDatasetConfig()
class TrainConfig:
def __init__(self):
self.name = "bigger" # current train process name
@ -70,3 +70,22 @@ class TrainConfig:
self.model_config = ModelConfig()
self.dataset = DatasetConfig()
def class_to_dict(obj):
if isinstance(obj, (int, float, str, bool, type(None))):
return obj
elif isinstance(obj, dict):
return {k: class_to_dict(v) for k, v in obj.items()}
elif isinstance(obj, list):
return {str(index): value for index, value in enumerate(obj)}
elif hasattr(obj, "__dict__"):
return {k: class_to_dict(v) for k, v in obj.__dict__.items()}
else:
return obj
# train_config = TrainConfig()
# train_config_dict = class_to_dict(train_config)
# import pprint
# pprint.pprint(train_config_dict)

View File

@ -29,27 +29,27 @@ def InitDataset(config):
return train_dataloader, val_dataloader
if config.dataset.name == "meaning":
conf = config.dataset.meaning
c = config.dataset.meaning
vocab = config.model_config.vocab_size
start = vocab * (conf.level_ratio**conf.level)
size = vocab * int((conf.level_ratio**conf.dataset_level))
start = vocab * (c.level_ratio**c.level)
size = vocab * int((c.level_ratio**c.dataset_level))
path = "./data/"
trainfile = path + f"MeaningDataset_train_v{size}_s{start}_s{size}_lr{conf.level_ratio}_ms{conf.min_subitem}.pt"
valfile = path + f"MeaningDataset_val_v{size}_s{start}_s{size}_lr{conf.level_ratio}_ms{conf.min_subitem}.pt"
trainfile = path + f"MeaningDataset_train_v{size}_s{start}_s{size}_lr{c.level_ratio}_ms{c.min_subitem}.pt"
valfile = path + f"MeaningDataset_val_v{size}_s{start}_s{size}_lr{c.level_ratio}_ms{c.min_subitem}.pt"
if not os.path.exists(path):
os.mkdir(path)
if os.path.exists(trainfile) and os.path.exists(valfile):
print(f"INFO: Load dataset from {trainfile}")
train_dataset = torch.load(trainfile, weights_only=False)
train_dataset.set_mask(conf.mask_level, conf.mask_idx)
train_dataset.set_mask(c.mask_level, c.mask_idx)
print(f"INFO: Load dataset from {valfile}")
val_dataset = torch.load(valfile, weights_only=False)
val_dataset.set_mask(conf.mask_level, conf.mask_idx)
val_dataset.set_mask(c.mask_level, c.mask_idx)
print(f"INFO: Load dataset end")
else:
raw_dataset = MeaningDataset(start, start + size, vocab, None, conf.level_ratio, conf.min_subitem)
raw_dataset.set_mask(conf.mask_level, conf.mask_idx)
raw_dataset = MeaningDataset(start, start + size, vocab, None, c.level_ratio, c.min_subitem)
raw_dataset.set_mask(c.mask_level, c.mask_idx)
train_dataset, val_dataset = raw_dataset.split(0.9)
torch.save(train_dataset, trainfile)
torch.save(val_dataset, valfile)

View File

@ -193,6 +193,7 @@ class QWenLMHeadModel(nn.Module):
class QwenRunner:
def __init__(self, qwen):
self.qwen = qwen
# torch.backends.cuda.enable_flash_sdp(True)
@torch.no_grad()
def Chat(

View File

@ -17,41 +17,44 @@ if __name__ == "__main__":
conf.pretrain_model_name = None # "qwen/Qwen-1_8B-Chat"
conf.learning_rate = 0.0001
conf.use_tril_attention_mask = None
conf.precision = "32-true" # "precision:bf16-mixed,16-mixed,32-true"
conf.train_batch_size = 8
conf.precision = "bf16-mixed" # "precision:bf16-mixed,16-mixed,32-true"
conf.train_batch_size = 16
conf.val_batch_size = 4
conf.num_proc = 8
conf.max_epochs = 1000
conf.strategy = "auto"
conf.resume_from_ckpt_path = None
conf.seed = 42
conf.dataloader_works = 2
conf.dataloader_works = 4
conf.mask_level = None # [0, 1, 2]
conf.mask_idx = None # [0, 0, -1]
conf.dataset.meaning.mask_level = [0, 1, 2]
conf.dataset.meaning.mask_idx = [0, -1, -1]
config.vocab_size = 256
config.hidden_size = 128 # 128 1024 2048 32
config.num_hidden_layers = 6 # 6 12 24 3
config.num_hidden_layers = 3 # 6 12 24 3
config.num_attention_heads = 16 # 8 8 16
torch.manual_seed(conf.seed)
lit_module = LitModule(conf.pretrain_model_name, conf.learning_rate, config, conf.use_tril_attention_mask)
tokenizer = QWenTokenizer("./model/wit_b64.tiktoken", "./model/wit_char.tiktoken")
lit_module = LitModule(conf)
train_dataloader, val_dataloader = ds.InitDataset(conf)
# for i in range(len(train_dataloader)):
# print(train_dataloader.print_mapping(i))
logger = TBLogger("./log/", name=conf.name)
logger.log_hyperparams(configuration.class_to_dict(conf))
torch.set_float32_matmul_precision("medium")
lit_trainer = pl.Trainer(
accelerator="cuda",
precision=conf.precision,
# logger=MLFLogger("./log/", run_name=conf.name),
logger=TBLogger("./log/", name=conf.name),
logger=logger,
strategy=conf.strategy,
max_epochs=conf.max_epochs,
)
lit_trainer.fit(
lit_module,
train_dataloaders=train_dataloader,