Refine train code.
This commit is contained in:
parent
3feec36059
commit
0b19fd576a
|
@ -1,5 +1,3 @@
|
|||
|
||||
|
||||
class ModelConfig:
|
||||
def __init__(self):
|
||||
self.vocab_size = 4096
|
||||
|
@ -47,14 +45,16 @@ class MeaningDatasetConfig:
|
|||
self.mask_level = None
|
||||
self.mask_idx = None
|
||||
|
||||
|
||||
class DatasetConfig:
|
||||
def __init__(self):
|
||||
self.name = "meaning"
|
||||
self.meaning = MeaningDatasetConfig()
|
||||
|
||||
|
||||
class TrainConfig:
|
||||
def __init__(self):
|
||||
self.name = "bigger" # current train process name
|
||||
self.name = "bigger" # current train process name
|
||||
self.pretrain_model_name = None # "qwen/Qwen-1_8B-Chat"
|
||||
self.learning_rate = 0.0001
|
||||
self.use_tril_attention_mask = None
|
||||
|
@ -69,4 +69,23 @@ class TrainConfig:
|
|||
self.dataloader_works = 2
|
||||
|
||||
self.model_config = ModelConfig()
|
||||
self.dataset = DatasetConfig()
|
||||
self.dataset = DatasetConfig()
|
||||
|
||||
|
||||
def class_to_dict(obj):
|
||||
if isinstance(obj, (int, float, str, bool, type(None))):
|
||||
return obj
|
||||
elif isinstance(obj, dict):
|
||||
return {k: class_to_dict(v) for k, v in obj.items()}
|
||||
elif isinstance(obj, list):
|
||||
return {str(index): value for index, value in enumerate(obj)}
|
||||
elif hasattr(obj, "__dict__"):
|
||||
return {k: class_to_dict(v) for k, v in obj.__dict__.items()}
|
||||
else:
|
||||
return obj
|
||||
|
||||
|
||||
# train_config = TrainConfig()
|
||||
# train_config_dict = class_to_dict(train_config)
|
||||
# import pprint
|
||||
# pprint.pprint(train_config_dict)
|
||||
|
|
|
@ -29,27 +29,27 @@ def InitDataset(config):
|
|||
return train_dataloader, val_dataloader
|
||||
|
||||
if config.dataset.name == "meaning":
|
||||
conf = config.dataset.meaning
|
||||
c = config.dataset.meaning
|
||||
vocab = config.model_config.vocab_size
|
||||
start = vocab * (conf.level_ratio**conf.level)
|
||||
size = vocab * int((conf.level_ratio**conf.dataset_level))
|
||||
start = vocab * (c.level_ratio**c.level)
|
||||
size = vocab * int((c.level_ratio**c.dataset_level))
|
||||
|
||||
path = "./data/"
|
||||
trainfile = path + f"MeaningDataset_train_v{size}_s{start}_s{size}_lr{conf.level_ratio}_ms{conf.min_subitem}.pt"
|
||||
valfile = path + f"MeaningDataset_val_v{size}_s{start}_s{size}_lr{conf.level_ratio}_ms{conf.min_subitem}.pt"
|
||||
trainfile = path + f"MeaningDataset_train_v{size}_s{start}_s{size}_lr{c.level_ratio}_ms{c.min_subitem}.pt"
|
||||
valfile = path + f"MeaningDataset_val_v{size}_s{start}_s{size}_lr{c.level_ratio}_ms{c.min_subitem}.pt"
|
||||
if not os.path.exists(path):
|
||||
os.mkdir(path)
|
||||
if os.path.exists(trainfile) and os.path.exists(valfile):
|
||||
print(f"INFO: Load dataset from {trainfile}")
|
||||
train_dataset = torch.load(trainfile, weights_only=False)
|
||||
train_dataset.set_mask(conf.mask_level, conf.mask_idx)
|
||||
train_dataset.set_mask(c.mask_level, c.mask_idx)
|
||||
print(f"INFO: Load dataset from {valfile}")
|
||||
val_dataset = torch.load(valfile, weights_only=False)
|
||||
val_dataset.set_mask(conf.mask_level, conf.mask_idx)
|
||||
val_dataset.set_mask(c.mask_level, c.mask_idx)
|
||||
print(f"INFO: Load dataset end")
|
||||
else:
|
||||
raw_dataset = MeaningDataset(start, start + size, vocab, None, conf.level_ratio, conf.min_subitem)
|
||||
raw_dataset.set_mask(conf.mask_level, conf.mask_idx)
|
||||
raw_dataset = MeaningDataset(start, start + size, vocab, None, c.level_ratio, c.min_subitem)
|
||||
raw_dataset.set_mask(c.mask_level, c.mask_idx)
|
||||
train_dataset, val_dataset = raw_dataset.split(0.9)
|
||||
torch.save(train_dataset, trainfile)
|
||||
torch.save(val_dataset, valfile)
|
||||
|
|
|
@ -193,6 +193,7 @@ class QWenLMHeadModel(nn.Module):
|
|||
class QwenRunner:
|
||||
def __init__(self, qwen):
|
||||
self.qwen = qwen
|
||||
# torch.backends.cuda.enable_flash_sdp(True)
|
||||
|
||||
@torch.no_grad()
|
||||
def Chat(
|
||||
|
|
23
wit/train.py
23
wit/train.py
|
@ -17,41 +17,44 @@ if __name__ == "__main__":
|
|||
conf.pretrain_model_name = None # "qwen/Qwen-1_8B-Chat"
|
||||
conf.learning_rate = 0.0001
|
||||
conf.use_tril_attention_mask = None
|
||||
conf.precision = "32-true" # "precision:bf16-mixed,16-mixed,32-true"
|
||||
conf.train_batch_size = 8
|
||||
conf.precision = "bf16-mixed" # "precision:bf16-mixed,16-mixed,32-true"
|
||||
conf.train_batch_size = 16
|
||||
conf.val_batch_size = 4
|
||||
conf.num_proc = 8
|
||||
conf.max_epochs = 1000
|
||||
conf.strategy = "auto"
|
||||
conf.resume_from_ckpt_path = None
|
||||
conf.seed = 42
|
||||
conf.dataloader_works = 2
|
||||
conf.dataloader_works = 4
|
||||
|
||||
conf.dataset.meaning.mask_level = [0, 1, 2]
|
||||
conf.dataset.meaning.mask_idx = [0, -1, -1]
|
||||
|
||||
conf.mask_level = None # [0, 1, 2]
|
||||
conf.mask_idx = None # [0, 0, -1]
|
||||
|
||||
config.vocab_size = 256
|
||||
config.hidden_size = 128 # 128 1024 2048 32
|
||||
config.num_hidden_layers = 6 # 6 12 24 3
|
||||
config.num_hidden_layers = 3 # 6 12 24 3
|
||||
config.num_attention_heads = 16 # 8 8 16
|
||||
|
||||
torch.manual_seed(conf.seed)
|
||||
lit_module = LitModule(conf.pretrain_model_name, conf.learning_rate, config, conf.use_tril_attention_mask)
|
||||
tokenizer = QWenTokenizer("./model/wit_b64.tiktoken", "./model/wit_char.tiktoken")
|
||||
lit_module = LitModule(conf)
|
||||
|
||||
train_dataloader, val_dataloader = ds.InitDataset(conf)
|
||||
# for i in range(len(train_dataloader)):
|
||||
# print(train_dataloader.print_mapping(i))
|
||||
|
||||
logger = TBLogger("./log/", name=conf.name)
|
||||
logger.log_hyperparams(configuration.class_to_dict(conf))
|
||||
|
||||
torch.set_float32_matmul_precision("medium")
|
||||
lit_trainer = pl.Trainer(
|
||||
accelerator="cuda",
|
||||
precision=conf.precision,
|
||||
# logger=MLFLogger("./log/", run_name=conf.name),
|
||||
logger=TBLogger("./log/", name=conf.name),
|
||||
logger=logger,
|
||||
strategy=conf.strategy,
|
||||
max_epochs=conf.max_epochs,
|
||||
)
|
||||
|
||||
lit_trainer.fit(
|
||||
lit_module,
|
||||
train_dataloaders=train_dataloader,
|
||||
|
|
Loading…
Reference in New Issue