Refine research_attention and forward model.
This commit is contained in:
parent
1811b9611a
commit
11af10e710
|
@ -209,30 +209,9 @@ class QwenRunner:
|
||||||
outputs = self.forwardQWen(input_ids)
|
outputs = self.forwardQWen(input_ids)
|
||||||
next_token_scores = outputs[:, -1, :]
|
next_token_scores = outputs[:, -1, :]
|
||||||
|
|
||||||
# repetition_penalty
|
next_token_scores = self.repetition_penalty(input_ids, next_token_scores)
|
||||||
penalty = qwen.config.repetition_penalty
|
next_token_scores = self.top_p(next_token_scores)
|
||||||
score = torch.gather(next_token_scores, 1, input_ids)
|
next_tokens = self.sample(next_token_scores)
|
||||||
# if score < 0 then repetition penalty has to be multiplied to reduce the token probabilities
|
|
||||||
score = torch.where(score < 0, score * penalty, score / penalty)
|
|
||||||
next_token_scores = next_token_scores.scatter_(1, input_ids, score)
|
|
||||||
|
|
||||||
# top_p
|
|
||||||
top_p = qwen.config.top_p
|
|
||||||
filter_value = -float("Inf")
|
|
||||||
min_tokens_to_keep = 1
|
|
||||||
sorted_logits, sorted_indices = torch.sort(next_token_scores, descending=False)
|
|
||||||
cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1)
|
|
||||||
# Remove tokens with cumulative top_p above the threshold (token with 0 are kept)
|
|
||||||
sorted_indices_to_remove = cumulative_probs <= (1 - top_p)
|
|
||||||
# Keep at least min_tokens_to_keep
|
|
||||||
sorted_indices_to_remove[..., -min_tokens_to_keep:] = 0
|
|
||||||
# scatter sorted tensors to original indexing
|
|
||||||
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
|
|
||||||
next_token_scores = next_token_scores.masked_fill(indices_to_remove, filter_value)
|
|
||||||
|
|
||||||
# sample
|
|
||||||
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
|
||||||
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
|
||||||
|
|
||||||
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
|
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
|
||||||
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
||||||
|
@ -379,3 +358,31 @@ class QwenRunner:
|
||||||
# loss.backward()
|
# loss.backward()
|
||||||
|
|
||||||
return lm_logits
|
return lm_logits
|
||||||
|
|
||||||
|
def repetition_penalty(self, input_ids, next_token_scores):
|
||||||
|
penalty = self.qwen.config.repetition_penalty
|
||||||
|
score = torch.gather(next_token_scores, 1, input_ids)
|
||||||
|
# if score < 0 then repetition penalty has to be multiplied to reduce the token probabilities
|
||||||
|
score = torch.where(score < 0, score * penalty, score / penalty)
|
||||||
|
next_token_scores = next_token_scores.scatter_(1, input_ids, score)
|
||||||
|
return next_token_scores
|
||||||
|
|
||||||
|
def top_p(self, next_token_scores):
|
||||||
|
top_p = self.qwen.config.top_p
|
||||||
|
filter_value = -float("Inf")
|
||||||
|
min_tokens_to_keep = 1
|
||||||
|
sorted_logits, sorted_indices = torch.sort(next_token_scores, descending=False)
|
||||||
|
cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1)
|
||||||
|
# Remove tokens with cumulative top_p above the threshold (token with 0 are kept)
|
||||||
|
sorted_indices_to_remove = cumulative_probs <= (1 - top_p)
|
||||||
|
# Keep at least min_tokens_to_keep
|
||||||
|
sorted_indices_to_remove[..., -min_tokens_to_keep:] = 0
|
||||||
|
# scatter sorted tensors to original indexing
|
||||||
|
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
|
||||||
|
next_token_scores = next_token_scores.masked_fill(indices_to_remove, filter_value)
|
||||||
|
return next_token_scores
|
||||||
|
|
||||||
|
def sample(self, next_token_scores):
|
||||||
|
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
||||||
|
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
||||||
|
return next_tokens
|
||||||
|
|
|
@ -70,12 +70,7 @@ def Dump_lm_head_weight(model):
|
||||||
# Dump_lm_head_weight(model)
|
# Dump_lm_head_weight(model)
|
||||||
|
|
||||||
|
|
||||||
class ResearchRunner(QwenRunner):
|
def DumpQK(query, key, causal_mask, index):
|
||||||
def attention(self, attention, query, key, value, causal_mask):
|
|
||||||
query = query.permute(0, 2, 1, 3)
|
|
||||||
key = key.permute(0, 2, 1, 3)
|
|
||||||
value = value.permute(0, 2, 1, 3)
|
|
||||||
|
|
||||||
scale_factor = 1 / math.sqrt(query.size(-1))
|
scale_factor = 1 / math.sqrt(query.size(-1))
|
||||||
attn_weight = query @ key.transpose(-2, -1) * scale_factor
|
attn_weight = query @ key.transpose(-2, -1) * scale_factor
|
||||||
attn_weight = torch.softmax(attn_weight, dim=-1)
|
attn_weight = torch.softmax(attn_weight, dim=-1)
|
||||||
|
@ -84,14 +79,35 @@ class ResearchRunner(QwenRunner):
|
||||||
attn_mask.masked_fill_(causal_mask.logical_not(), float(0))
|
attn_mask.masked_fill_(causal_mask.logical_not(), float(0))
|
||||||
qk = attn_weight * attn_mask
|
qk = attn_weight * attn_mask
|
||||||
qk = qk[0]
|
qk = qk[0]
|
||||||
prePath = "./temp/" + "q@k_seq_" + str(size) + "_layer_" + str(attention.index) + ".png"
|
prePath = "./temp/" + "q@k_seq_" + str(size) + "_layer_" + str(index) + ".png"
|
||||||
show.DumpTensorToImage(qk, prePath, GridValue=255)
|
show.DumpTensorToImage(qk, prePath, GridValue=255)
|
||||||
|
|
||||||
|
|
||||||
|
class ResearchRunner(QwenRunner):
|
||||||
|
def __init__(self, model):
|
||||||
|
super().__init__(model)
|
||||||
|
self.tokenDecode = []
|
||||||
|
|
||||||
|
def attention(self, attention, query, key, value, causal_mask):
|
||||||
|
query = query.permute(0, 2, 1, 3)
|
||||||
|
key = key.permute(0, 2, 1, 3)
|
||||||
|
value = value.permute(0, 2, 1, 3)
|
||||||
|
|
||||||
|
DumpQK(query, key, causal_mask, attention.index)
|
||||||
|
|
||||||
attn_output = F.scaled_dot_product_attention(query, key, value, attn_mask=causal_mask).transpose(1, 2)
|
attn_output = F.scaled_dot_product_attention(query, key, value, attn_mask=causal_mask).transpose(1, 2)
|
||||||
context_layer = attention._merge_heads(attn_output, attention.num_heads, attention.head_dim)
|
context_layer = attention._merge_heads(attn_output, attention.num_heads, attention.head_dim)
|
||||||
attn_output = attention.c_proj(context_layer)
|
attn_output = attention.c_proj(context_layer)
|
||||||
return attn_output
|
return attn_output
|
||||||
|
|
||||||
|
def sample(self, next_token_scores):
|
||||||
|
next_tokens = super().sample(next_token_scores)
|
||||||
|
decoded, response, end_reason = decode_tokens(
|
||||||
|
next_tokens,
|
||||||
|
tokenizer,
|
||||||
|
)
|
||||||
|
self.tokenDecode.append(decoded)
|
||||||
|
return next_tokens
|
||||||
|
|
||||||
runner = ResearchRunner(model)
|
runner = ResearchRunner(model)
|
||||||
|
|
||||||
|
@ -106,5 +122,8 @@ print(decode_tokens)
|
||||||
# 日本的首都东京。<|im_end|>
|
# 日本的首都东京。<|im_end|>
|
||||||
# <|endoftext|>
|
# <|endoftext|>
|
||||||
|
|
||||||
|
show.DumpListToFile(runner.tokenDecode, "./temp/token_decode_list.txt")
|
||||||
|
|
||||||
|
|
||||||
if decode_tokens.split("\n")[-2] != """日本的首都东京。<|im_end|>""":
|
if decode_tokens.split("\n")[-2] != """日本的首都东京。<|im_end|>""":
|
||||||
raise ()
|
raise ()
|
||||||
|
|
Loading…
Reference in New Issue