PreTrainedModel to mm.Module
This commit is contained in:
parent
0458e7303c
commit
12dcbec718
|
@ -33,5 +33,14 @@
|
|||
"use_dynamic_ntk": true,
|
||||
"use_flash_attn": "auto",
|
||||
"use_logn_attn": true,
|
||||
"vocab_size": 151936
|
||||
"vocab_size": 151936,
|
||||
"chat_format": "chatml",
|
||||
"eos_token_id": 151643,
|
||||
"pad_token_id": 151643,
|
||||
"max_window_size": 6144,
|
||||
"max_new_tokens": 512,
|
||||
"do_sample": true,
|
||||
"top_k": 0,
|
||||
"top_p": 0.8,
|
||||
"repetition_penalty": 1.1
|
||||
}
|
|
@ -52,10 +52,11 @@ print(model)
|
|||
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
|
||||
model = model.from_pretrained(model_dir, config=config, device_map="auto", trust_remote_code=True)
|
||||
# model = model.from_pretrained(model_dir, config=config, device_map="cuda:1", trust_remote_code=True)
|
||||
model = model.from_pretrained(model_dir).cuda()
|
||||
|
||||
# model = model.eval()
|
||||
model = model.train() # control by @torch.no_grad()
|
||||
model = model.train() # control by @torch.no_grad()
|
||||
|
||||
# 可指定不同的生成长度、top_p等相关超参
|
||||
# model.generation_config = GenerationConfig.from_pretrained(
|
||||
|
@ -80,7 +81,7 @@ print(decode_tokens)
|
|||
|
||||
# 第二轮对话
|
||||
response, history, decode_tokens = model.chat(tokenizer, "给我讲一个年轻人奋斗创业最终取得成功的故事。", "", history=None)
|
||||
print(response)
|
||||
print(decode_tokens)
|
||||
|
||||
|
||||
# <|im_start|>system
|
||||
|
|
|
@ -1,12 +0,0 @@
|
|||
{
|
||||
"chat_format": "chatml",
|
||||
"eos_token_id": 151643,
|
||||
"pad_token_id": 151643,
|
||||
"max_window_size": 6144,
|
||||
"max_new_tokens": 512,
|
||||
"do_sample": true,
|
||||
"top_k": 0,
|
||||
"top_p": 0.8,
|
||||
"repetition_penalty": 1.1,
|
||||
"transformers_version": "4.31.0"
|
||||
}
|
|
@ -6,6 +6,10 @@
|
|||
import copy
|
||||
import math
|
||||
import inspect
|
||||
import os
|
||||
import gc
|
||||
from tqdm import auto as tqdm_lib
|
||||
import json
|
||||
from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List, Any, Generator
|
||||
|
||||
import torch
|
||||
|
@ -37,6 +41,11 @@ from qwen_generation_utils import (
|
|||
StopWordsLogitsProcessor,
|
||||
)
|
||||
|
||||
from safetensors import safe_open
|
||||
from safetensors.torch import load_file as safe_load_file
|
||||
from safetensors.torch import save_file as safe_save_file
|
||||
|
||||
|
||||
import sys
|
||||
|
||||
sys.path.append("..")
|
||||
|
@ -192,7 +201,7 @@ class QWenBlock(nn.Module):
|
|||
return hidden_states
|
||||
|
||||
|
||||
class QWenPreTrainedModel(PreTrainedModel):
|
||||
class QWenPreTrainedModel(nn.Module):
|
||||
config_class = QWenConfig
|
||||
base_model_prefix = "transformer"
|
||||
is_parallelizable = False
|
||||
|
@ -200,7 +209,7 @@ class QWenPreTrainedModel(PreTrainedModel):
|
|||
_no_split_modules = ["QWenBlock"]
|
||||
|
||||
def __init__(self, *inputs, **kwargs):
|
||||
super().__init__(*inputs, **kwargs)
|
||||
super().__init__()
|
||||
|
||||
|
||||
class QWenModel(QWenPreTrainedModel):
|
||||
|
@ -231,8 +240,6 @@ class QWenModel(QWenPreTrainedModel):
|
|||
eps=config.layer_norm_epsilon,
|
||||
)
|
||||
|
||||
self.post_init()
|
||||
|
||||
def get_ntk_alpha(self, true_seq_len):
|
||||
context_value = math.log(true_seq_len / self.seq_length, 2) + 1
|
||||
ntk_alpha = 2 ** math.ceil(context_value) - 1
|
||||
|
@ -242,7 +249,6 @@ class QWenModel(QWenPreTrainedModel):
|
|||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
):
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
|
@ -257,8 +263,6 @@ class QWenModel(QWenPreTrainedModel):
|
|||
else:
|
||||
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||||
|
||||
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.wte(input_ids)
|
||||
hidden_states = inputs_embeds
|
||||
|
@ -288,13 +292,14 @@ class QWenModel(QWenPreTrainedModel):
|
|||
return BaseModelOutputWithPast(last_hidden_state=hidden_states, hidden_states=all_hidden_states)
|
||||
|
||||
|
||||
class QWenLMHeadModel(QWenPreTrainedModel):
|
||||
class QWenLMHeadModel(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
super().__init__()
|
||||
self.config = config
|
||||
|
||||
self.transformer = QWenModel(config)
|
||||
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||
self.post_init()
|
||||
self.generation_config = GenerationConfig.from_model_config(config)
|
||||
|
||||
def prepare_inputs_for_generation(self, input_ids, inputs_embeds=None, **kwargs):
|
||||
model_inputs = {"input_ids": input_ids}
|
||||
|
@ -303,13 +308,11 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
) -> Union[Tuple, CausalLMOutputWithPast]:
|
||||
transformer_outputs = self.transformer(
|
||||
input_ids,
|
||||
head_mask=head_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
)
|
||||
hidden_states = transformer_outputs[0]
|
||||
|
@ -339,6 +342,59 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|||
attentions=transformer_outputs.attentions,
|
||||
)
|
||||
|
||||
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]]):
|
||||
load_in_8bit = False
|
||||
load_in_4bit = False
|
||||
|
||||
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
|
||||
resolved_archive_file = os.path.join(pretrained_model_name_or_path, "model.safetensors.index.json")
|
||||
print(f"loading weights file {resolved_archive_file}")
|
||||
with open(resolved_archive_file, "r") as f:
|
||||
index = json.loads(f.read())
|
||||
shard_filenames = sorted(set(index["weight_map"].values()))
|
||||
resolved_archive_file = [os.path.join(pretrained_model_name_or_path, f) for f in shard_filenames]
|
||||
model = cls._load_pretrained_model(resolved_archive_file)
|
||||
model.is_loaded_in_4bit = load_in_4bit
|
||||
model.is_loaded_in_8bit = load_in_8bit
|
||||
return model
|
||||
|
||||
def _load_state_dict_into_model(self, model_to_load, state_dict, start_prefix):
|
||||
metadata = getattr(state_dict, "_metadata", None)
|
||||
state_dict = state_dict.copy()
|
||||
if metadata is not None:
|
||||
state_dict._metadata = metadata
|
||||
error_msgs = []
|
||||
|
||||
def load(module: nn.Module, state_dict, prefix=""):
|
||||
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
|
||||
args = (state_dict, prefix, local_metadata, True, [], [], error_msgs)
|
||||
if len([key for key in state_dict if key.startswith(prefix)]) > 0:
|
||||
module._load_from_state_dict(*args)
|
||||
|
||||
for name, child in module._modules.items():
|
||||
if child is not None:
|
||||
load(child, state_dict, prefix + name + ".")
|
||||
|
||||
load(model_to_load, state_dict, prefix=start_prefix)
|
||||
del state_dict
|
||||
return error_msgs
|
||||
|
||||
def _load_pretrained_model(cls, resolved_archive_file):
|
||||
start_prefix = ""
|
||||
model_to_load = cls
|
||||
error_msgs = []
|
||||
if len(resolved_archive_file) > 1:
|
||||
resolved_archive_file = tqdm_lib.tqdm(resolved_archive_file, desc="Loading checkpoint shards")
|
||||
for shard_file in resolved_archive_file:
|
||||
state_dict = safe_load_file(shard_file)
|
||||
|
||||
error_msgs += cls._load_state_dict_into_model(model_to_load, state_dict, start_prefix)
|
||||
del state_dict # force memory release
|
||||
gc.collect()
|
||||
|
||||
print(f"All model checkpoint weights were used when initializing {cls.__class__.__name__}.\n")
|
||||
return cls
|
||||
|
||||
@torch.no_grad()
|
||||
def chat(
|
||||
self,
|
||||
|
@ -358,15 +414,10 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|||
|
||||
stop_words_ids = []
|
||||
|
||||
max_window_size = kwargs.get("max_window_size", None)
|
||||
if max_window_size is None:
|
||||
max_window_size = generation_config.max_window_size
|
||||
raw_text, context_tokens = make_context(
|
||||
tokenizer, query, query_assistant, history=history, system=system, max_window_size=max_window_size
|
||||
)
|
||||
raw_text, context_tokens = make_context(tokenizer, query, query_assistant, history=history, system=system)
|
||||
|
||||
stop_words_ids.extend([[tokenizer.im_end_id], [tokenizer.im_start_id]])
|
||||
input_ids = torch.tensor([context_tokens]).to(self.device)
|
||||
input_ids = torch.tensor([context_tokens]).to(next(self.parameters()).device)
|
||||
outputs = self.generate(
|
||||
input_ids,
|
||||
stop_words_ids=stop_words_ids,
|
||||
|
@ -385,7 +436,7 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|||
|
||||
def generate(
|
||||
self,
|
||||
inputs: Optional[torch.Tensor] = None,
|
||||
input_ids: Optional[torch.Tensor] = None,
|
||||
stop_words_ids=[],
|
||||
tokenizer=None,
|
||||
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
|
||||
|
@ -393,13 +444,9 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|||
) -> Union[GenerateOutput, torch.LongTensor]:
|
||||
generation_config = self.generation_config
|
||||
|
||||
# 1. Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call
|
||||
self._validate_model_class()
|
||||
|
||||
generation_config = copy.deepcopy(generation_config)
|
||||
model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs
|
||||
generation_config.validate()
|
||||
self._validate_model_kwargs(model_kwargs.copy())
|
||||
|
||||
# 2. Set generation parameters if not already defined
|
||||
|
||||
|
@ -409,57 +456,14 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|||
eos_token_id = eos_token_id[0]
|
||||
generation_config.pad_token_id = eos_token_id
|
||||
|
||||
# 3. Define model inputs
|
||||
inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(
|
||||
inputs, generation_config.bos_token_id, model_kwargs
|
||||
)
|
||||
# 4. Define other model kwargs
|
||||
|
||||
# 5. Prepare `input_ids` which will be used for auto-regressive generation
|
||||
input_ids = inputs_tensor if model_input_name == "input_ids" else model_kwargs.pop("input_ids")
|
||||
|
||||
# 6. Prepare `max_length` depending on other stopping criteria.
|
||||
input_ids_length = input_ids.shape[-1]
|
||||
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
|
||||
generation_config.max_length = generation_config.max_new_tokens + input_ids_length
|
||||
self._validate_generated_length(generation_config, input_ids_length, has_default_max_length)
|
||||
|
||||
stop_words_logits_processor = StopWordsLogitsProcessor(
|
||||
stop_words_ids=stop_words_ids,
|
||||
eos_token_id=generation_config.eos_token_id,
|
||||
)
|
||||
logits_processor = LogitsProcessorList([stop_words_logits_processor])
|
||||
logits_processor = self._get_logits_processor(
|
||||
generation_config=generation_config,
|
||||
input_ids_seq_length=input_ids_length,
|
||||
encoder_input_ids=inputs_tensor,
|
||||
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
||||
logits_processor=logits_processor,
|
||||
model_kwargs=model_kwargs,
|
||||
negative_prompt_ids=None,
|
||||
negative_prompt_attention_mask=None,
|
||||
)
|
||||
|
||||
# 12. expand input_ids with `num_return_sequences` additional sequences per batch
|
||||
input_ids, model_kwargs = self._expand_inputs_for_generation(
|
||||
input_ids=input_ids,
|
||||
expand_size=generation_config.num_return_sequences,
|
||||
is_encoder_decoder=False,
|
||||
**model_kwargs,
|
||||
)
|
||||
|
||||
# 13. run sample
|
||||
|
||||
pad_token_id = generation_config.pad_token_id
|
||||
eos_token_id_tensor = torch.tensor([generation_config.eos_token_id]).to(input_ids.device)
|
||||
|
||||
# init values
|
||||
stopping_criteria = self._get_stopping_criteria(
|
||||
generation_config=generation_config, stopping_criteria=StoppingCriteriaList()
|
||||
)
|
||||
|
||||
logits_warper = self._get_logits_warper(generation_config)
|
||||
|
||||
# init attention / hidden states / scores tuples
|
||||
scores = None
|
||||
|
||||
|
@ -469,7 +473,6 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|||
this_peer_finished = False
|
||||
# auto-regressive generation
|
||||
while True:
|
||||
# prepare model inputs
|
||||
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
||||
|
||||
# forward pass to get next token
|
||||
|
@ -477,9 +480,24 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|||
|
||||
next_token_scores = outputs.logits[:, -1, :]
|
||||
|
||||
# pre-process distribution
|
||||
next_token_scores = logits_processor(input_ids, next_token_scores)
|
||||
next_token_scores = logits_warper(input_ids, next_token_scores)
|
||||
penalty = self.config.repetition_penalty
|
||||
score = torch.gather(next_token_scores, 1, input_ids)
|
||||
# if score < 0 then repetition penalty has to be multiplied to reduce the token probabilities
|
||||
score = torch.where(score < 0, score * penalty, score / penalty)
|
||||
next_token_scores = next_token_scores.scatter_(1, input_ids, score)
|
||||
|
||||
top_p = self.config.top_p
|
||||
filter_value = -float("Inf")
|
||||
min_tokens_to_keep = 1
|
||||
sorted_logits, sorted_indices = torch.sort(next_token_scores, descending=False)
|
||||
cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1)
|
||||
# Remove tokens with cumulative top_p above the threshold (token with 0 are kept)
|
||||
sorted_indices_to_remove = cumulative_probs <= (1 - top_p)
|
||||
# Keep at least min_tokens_to_keep
|
||||
sorted_indices_to_remove[..., -min_tokens_to_keep:] = 0
|
||||
# scatter sorted tensors to original indexing
|
||||
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
|
||||
next_token_scores = next_token_scores.masked_fill(indices_to_remove, filter_value)
|
||||
|
||||
# sample
|
||||
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
||||
|
@ -489,7 +507,6 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|||
|
||||
# update generated ids, model inputs, and length for next step
|
||||
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
||||
model_kwargs = self._update_model_kwargs_for_generation(outputs, model_kwargs, is_encoder_decoder=False)
|
||||
|
||||
unfinished_sequences = unfinished_sequences.mul(
|
||||
next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
|
||||
|
@ -508,10 +525,6 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|||
if unfinished_sequences.max() == 0:
|
||||
this_peer_finished = True
|
||||
|
||||
# stop if we exceed the maximum length
|
||||
if stopping_criteria(input_ids, scores):
|
||||
this_peer_finished = True
|
||||
|
||||
if this_peer_finished:
|
||||
break
|
||||
return input_ids
|
||||
|
|
Loading…
Reference in New Issue