add mnbvc dataset .
This commit is contained in:
parent
8120be66a6
commit
1622bf3054
|
@ -0,0 +1,104 @@
|
||||||
|
import argparse
|
||||||
|
from functools import partial
|
||||||
|
from itertools import chain
|
||||||
|
from typing import Dict, Tuple
|
||||||
|
|
||||||
|
import datasets
|
||||||
|
import pytorch_lightning as pl
|
||||||
|
import torch
|
||||||
|
from torch.utils.data import ConcatDataset, DataLoader, Dataset, random_split
|
||||||
|
|
||||||
|
from transformers import (
|
||||||
|
BatchEncoding,
|
||||||
|
DefaultDataCollator,
|
||||||
|
PreTrainedTokenizer,
|
||||||
|
set_seed,
|
||||||
|
)
|
||||||
|
from tokenization_qwen import QWenTokenizer
|
||||||
|
|
||||||
|
dataset_name = ["/home/colin/develop/dataset/liwu/MNBVC/wiki"]
|
||||||
|
dataset_name = ["/home/colin/develop/dataset/liwu/MNBVC/wiki/20230198/58.jsonl.gz"]
|
||||||
|
num_proc = 8
|
||||||
|
seed = 42
|
||||||
|
|
||||||
|
|
||||||
|
def split_raw_dataset(
|
||||||
|
raw_dataset: datasets.DatasetDict,
|
||||||
|
) -> Tuple[datasets.Dataset, datasets.Dataset]:
|
||||||
|
if "validation" in raw_dataset:
|
||||||
|
train_dataset, val_dataset = raw_dataset["train"], raw_dataset["validation"]
|
||||||
|
else:
|
||||||
|
raw_dataset = raw_dataset["train"].train_test_split(test_size=0.05, seed=seed)
|
||||||
|
train_dataset, val_dataset = raw_dataset["train"], raw_dataset["test"]
|
||||||
|
return train_dataset, val_dataset
|
||||||
|
|
||||||
|
|
||||||
|
def process_dataset(dataset: datasets.Dataset, tokenizer: PreTrainedTokenizer) -> datasets.Dataset:
|
||||||
|
def group_texts(examples: Dict[str, list], block_size: int = 512) -> BatchEncoding:
|
||||||
|
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
|
||||||
|
total_length = len(concatenated_examples[list(examples.keys())[0]])
|
||||||
|
total_length = (total_length // block_size) * block_size
|
||||||
|
result = {
|
||||||
|
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
|
||||||
|
for k, t in concatenated_examples.items()
|
||||||
|
}
|
||||||
|
result["labels"] = result["input_ids"].copy()
|
||||||
|
result = BatchEncoding(result)
|
||||||
|
return result
|
||||||
|
|
||||||
|
def format_inputs(examples):
|
||||||
|
p = examples["段落"]
|
||||||
|
mergeLine = ""
|
||||||
|
for line in p:
|
||||||
|
mergeLine += line["内容"] + "\n"
|
||||||
|
return {"text": mergeLine}
|
||||||
|
|
||||||
|
def tokenize_inputs(
|
||||||
|
examples: Dict[str, list],
|
||||||
|
tokenizer: PreTrainedTokenizer,
|
||||||
|
column_name: str = "text",
|
||||||
|
) -> BatchEncoding:
|
||||||
|
logits = tokenizer(examples[column_name], return_attention_mask=False)
|
||||||
|
return logits
|
||||||
|
|
||||||
|
dataset_column_names = list(dataset.features)
|
||||||
|
dataset = dataset.map(
|
||||||
|
partial(format_inputs),
|
||||||
|
batched=False,
|
||||||
|
num_proc=num_proc,
|
||||||
|
remove_columns=dataset_column_names,
|
||||||
|
)
|
||||||
|
dataset_column_names = list(dataset.features)
|
||||||
|
dataset = dataset.map(
|
||||||
|
partial(tokenize_inputs, tokenizer=tokenizer),
|
||||||
|
batched=True,
|
||||||
|
num_proc=num_proc,
|
||||||
|
remove_columns=dataset_column_names,
|
||||||
|
)
|
||||||
|
dataset = dataset.map(
|
||||||
|
partial(group_texts, block_size=tokenizer.model_max_length),
|
||||||
|
batched=True,
|
||||||
|
num_proc=num_proc,
|
||||||
|
)
|
||||||
|
|
||||||
|
return dataset
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
set_seed(seed)
|
||||||
|
tokenizer = QWenTokenizer("./wit_b64.tiktoken", "./wit_char.tiktoken")
|
||||||
|
train_dataset_list = []
|
||||||
|
val_dataset_list = []
|
||||||
|
for dn in dataset_name:
|
||||||
|
datanames = dn.split(".")
|
||||||
|
if datanames[-1] == "gz" and datanames[-2] == "jsonl":
|
||||||
|
raw_dataset = datasets.load_dataset("json", data_files=dn)
|
||||||
|
elif datanames[-1] == "json":
|
||||||
|
raw_dataset = datasets.load_dataset("json", data_files=dn)
|
||||||
|
else:
|
||||||
|
raw_dataset = datasets.load_dataset(dn)
|
||||||
|
train_dataset, val_dataset = split_raw_dataset(raw_dataset)
|
||||||
|
train_dataset = process_dataset(train_dataset, tokenizer)
|
||||||
|
val_dataset = process_dataset(val_dataset, tokenizer)
|
||||||
|
train_dataset_list.append(train_dataset)
|
||||||
|
val_dataset_list.append(val_dataset)
|
Loading…
Reference in New Issue