add mnbvc dataset .
This commit is contained in:
parent
8120be66a6
commit
1622bf3054
|
@ -0,0 +1,104 @@
|
|||
import argparse
|
||||
from functools import partial
|
||||
from itertools import chain
|
||||
from typing import Dict, Tuple
|
||||
|
||||
import datasets
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from torch.utils.data import ConcatDataset, DataLoader, Dataset, random_split
|
||||
|
||||
from transformers import (
|
||||
BatchEncoding,
|
||||
DefaultDataCollator,
|
||||
PreTrainedTokenizer,
|
||||
set_seed,
|
||||
)
|
||||
from tokenization_qwen import QWenTokenizer
|
||||
|
||||
dataset_name = ["/home/colin/develop/dataset/liwu/MNBVC/wiki"]
|
||||
dataset_name = ["/home/colin/develop/dataset/liwu/MNBVC/wiki/20230198/58.jsonl.gz"]
|
||||
num_proc = 8
|
||||
seed = 42
|
||||
|
||||
|
||||
def split_raw_dataset(
|
||||
raw_dataset: datasets.DatasetDict,
|
||||
) -> Tuple[datasets.Dataset, datasets.Dataset]:
|
||||
if "validation" in raw_dataset:
|
||||
train_dataset, val_dataset = raw_dataset["train"], raw_dataset["validation"]
|
||||
else:
|
||||
raw_dataset = raw_dataset["train"].train_test_split(test_size=0.05, seed=seed)
|
||||
train_dataset, val_dataset = raw_dataset["train"], raw_dataset["test"]
|
||||
return train_dataset, val_dataset
|
||||
|
||||
|
||||
def process_dataset(dataset: datasets.Dataset, tokenizer: PreTrainedTokenizer) -> datasets.Dataset:
|
||||
def group_texts(examples: Dict[str, list], block_size: int = 512) -> BatchEncoding:
|
||||
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
|
||||
total_length = len(concatenated_examples[list(examples.keys())[0]])
|
||||
total_length = (total_length // block_size) * block_size
|
||||
result = {
|
||||
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
|
||||
for k, t in concatenated_examples.items()
|
||||
}
|
||||
result["labels"] = result["input_ids"].copy()
|
||||
result = BatchEncoding(result)
|
||||
return result
|
||||
|
||||
def format_inputs(examples):
|
||||
p = examples["段落"]
|
||||
mergeLine = ""
|
||||
for line in p:
|
||||
mergeLine += line["内容"] + "\n"
|
||||
return {"text": mergeLine}
|
||||
|
||||
def tokenize_inputs(
|
||||
examples: Dict[str, list],
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
column_name: str = "text",
|
||||
) -> BatchEncoding:
|
||||
logits = tokenizer(examples[column_name], return_attention_mask=False)
|
||||
return logits
|
||||
|
||||
dataset_column_names = list(dataset.features)
|
||||
dataset = dataset.map(
|
||||
partial(format_inputs),
|
||||
batched=False,
|
||||
num_proc=num_proc,
|
||||
remove_columns=dataset_column_names,
|
||||
)
|
||||
dataset_column_names = list(dataset.features)
|
||||
dataset = dataset.map(
|
||||
partial(tokenize_inputs, tokenizer=tokenizer),
|
||||
batched=True,
|
||||
num_proc=num_proc,
|
||||
remove_columns=dataset_column_names,
|
||||
)
|
||||
dataset = dataset.map(
|
||||
partial(group_texts, block_size=tokenizer.model_max_length),
|
||||
batched=True,
|
||||
num_proc=num_proc,
|
||||
)
|
||||
|
||||
return dataset
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
set_seed(seed)
|
||||
tokenizer = QWenTokenizer("./wit_b64.tiktoken", "./wit_char.tiktoken")
|
||||
train_dataset_list = []
|
||||
val_dataset_list = []
|
||||
for dn in dataset_name:
|
||||
datanames = dn.split(".")
|
||||
if datanames[-1] == "gz" and datanames[-2] == "jsonl":
|
||||
raw_dataset = datasets.load_dataset("json", data_files=dn)
|
||||
elif datanames[-1] == "json":
|
||||
raw_dataset = datasets.load_dataset("json", data_files=dn)
|
||||
else:
|
||||
raw_dataset = datasets.load_dataset(dn)
|
||||
train_dataset, val_dataset = split_raw_dataset(raw_dataset)
|
||||
train_dataset = process_dataset(train_dataset, tokenizer)
|
||||
val_dataset = process_dataset(val_dataset, tokenizer)
|
||||
train_dataset_list.append(train_dataset)
|
||||
val_dataset_list.append(val_dataset)
|
Loading…
Reference in New Issue