Refine train.

This commit is contained in:
Colin 2024-01-10 05:22:26 +00:00
parent 69cb525ab0
commit 1b8007e1c3
1 changed files with 16 additions and 4 deletions

View File

@ -1,7 +1,6 @@
import torchvision
import torch
from torch import nn
import cv2
import numpy as np
import torch.nn.functional as F
@ -12,7 +11,7 @@ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
weights_path = "weights"
model = resnet
model.train().cuda()
model.train().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.2, momentum=0.9, weight_decay=5e-4)
@ -21,13 +20,26 @@ scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=20)
# with torch.no_grad():
img_ori = np.ones([1, 3, 224, 224])
img_ori = np.float32(img_ori) / 255
img_ori = torch.tensor(img_ori).cuda()
img_ori = torch.tensor(img_ori).to(device)
output = model(img_ori)
target = torch.ones([1]).to(torch.int64).cuda()
target = torch.ones([1]).to(torch.int64)
target = target.to(device)
optimizer.zero_grad()
loss = F.nll_loss(output, target)
loss.backward()
params = list(model.parameters())
named_params = dict(model.named_parameters())
print(model)
# import visdom
# viz = visdom.Visdom()
# # viz.heatmap(img_ori)
# viz.image(img_ori)
optimizer.step()
print(loss)