Refine train dataset.
This commit is contained in:
parent
3c774983d4
commit
2bc9e3b57e
20
wit/train.py
20
wit/train.py
|
@ -27,12 +27,12 @@ seed = 42
|
||||||
|
|
||||||
vocab_size = 1024
|
vocab_size = 1024
|
||||||
level_ratio = 4
|
level_ratio = 4
|
||||||
level = 4
|
level = 6
|
||||||
dataset_level = 1
|
dataset_level = 1
|
||||||
|
|
||||||
hidden_size = 256 # 128 1024 2048 32
|
hidden_size = 2048 # 128 1024 2048 32
|
||||||
num_attention_heads = 8 # 8 8 16
|
num_attention_heads = 16 # 8 8 16
|
||||||
num_hidden_layers = 2 # 6 12 24 3
|
num_hidden_layers = 12 # 6 12 24 3
|
||||||
|
|
||||||
name = "vocab_ratio_level_data_hidden_head_layer"
|
name = "vocab_ratio_level_data_hidden_head_layer"
|
||||||
ver = f"{vocab_size}" + "_" + f"{level_ratio}" + "_" + f"{level}" + "_" + f"{dataset_level}"
|
ver = f"{vocab_size}" + "_" + f"{level_ratio}" + "_" + f"{level}" + "_" + f"{dataset_level}"
|
||||||
|
@ -51,16 +51,14 @@ if __name__ == "__main__":
|
||||||
tokenizer = QWenTokenizer("./wit_b64.tiktoken", "./wit_char.tiktoken")
|
tokenizer = QWenTokenizer("./wit_b64.tiktoken", "./wit_char.tiktoken")
|
||||||
|
|
||||||
start = vocab_size * (level_ratio**level)
|
start = vocab_size * (level_ratio**level)
|
||||||
end = start * level_ratio
|
size = vocab_size * (level_ratio**dataset_level)
|
||||||
size = int(vocab_size * (level_ratio**dataset_level))
|
raw_dataset = MeaningDataset(start, start + size, size, vocab_size, level_ratio)
|
||||||
raw_dataset = MeaningDataset(start, end, size, vocab_size, level_ratio)
|
|
||||||
train_dataset, val_dataset = raw_dataset.split(0.9)
|
train_dataset, val_dataset = raw_dataset.split(0.9)
|
||||||
train_dataloader = BatchGroupMeaningDataloader(train_dataset, train_batch_size)
|
train_dataloader = BatchGroupMeaningDataloader(train_dataset, train_batch_size)
|
||||||
val_dataloader = BatchGroupMeaningDataloader(val_dataset, val_batch_size)
|
val_dataloader = BatchGroupMeaningDataloader(val_dataset, val_batch_size)
|
||||||
# it = iter(train_dataloader)
|
|
||||||
# print("data samples:")
|
# for i in range(len(train_dataloader)):
|
||||||
# for i in range(10):
|
# print(train_dataloader.print_mapping(i))
|
||||||
# print(next(it)["input_ids"].numpy().tolist())
|
|
||||||
|
|
||||||
torch.set_float32_matmul_precision("medium")
|
torch.set_float32_matmul_precision("medium")
|
||||||
lit_trainer = pl.Trainer(
|
lit_trainer = pl.Trainer(
|
||||||
|
|
Loading…
Reference in New Issue