Refine train.py.

This commit is contained in:
Colin 2024-03-26 15:01:19 +08:00
parent b0ca4dc35d
commit 33b351ff8a
1 changed files with 26 additions and 9 deletions

View File

@ -17,32 +17,49 @@ pretrain_model_name = None # "qwen/Qwen-1_8B-Chat"
learning_rate = 0.0001 learning_rate = 0.0001
use_tril_attention_mask = None use_tril_attention_mask = None
precision = "32-true" # "precision:bf16-mixed,16-mixed,32-true" precision = "32-true" # "precision:bf16-mixed,16-mixed,32-true"
train_batch_size = 16 train_batch_size = 32
val_batch_size = 32 val_batch_size = 32
num_proc = 8 num_proc = 8
max_epochs = 1000 max_epochs = 1000
strategy = "auto" strategy = "auto"
resume_from_ckpt_path = None resume_from_ckpt_path = None
seed = 42 seed = 42
vocab_size = 256
vocab_size = 1024
level_ratio = 4
hidden_size = 256 # 128 1024 2048 32
num_attention_heads = 8 # 8 8 16
num_hidden_layers = 1 # 6 12 24 3
name = "vocab_level_hidden_head_layer"
version = (
str(vocab_size)
+ "_"
+ str(level_ratio)
+ "_"
+ str(hidden_size)
+ "_"
+ str(num_attention_heads)
+ "_"
+ str(num_hidden_layers)
)
if __name__ == "__main__": if __name__ == "__main__":
torch.manual_seed(seed) torch.manual_seed(seed)
config = ModelConfig() config = ModelConfig()
config.vocab_size = vocab_size config.vocab_size = vocab_size
config.hidden_size = 1024 # 128 1024 2048 32 config.hidden_size = hidden_size
config.num_hidden_layers = 12 # 6 12 24 3 config.num_hidden_layers = num_hidden_layers
config.num_attention_heads = 16 # 8 8 16 config.num_attention_heads = num_attention_heads
lit_module = LitModule(pretrain_model_name, learning_rate, config, use_tril_attention_mask) lit_module = LitModule(pretrain_model_name, learning_rate, config, use_tril_attention_mask)
tokenizer = QWenTokenizer("./wit_b64.tiktoken", "./wit_char.tiktoken") tokenizer = QWenTokenizer("./wit_b64.tiktoken", "./wit_char.tiktoken")
level_ratio = 6 start = vocab_size * level_ratio * level_ratio * level_ratio * level_ratio
start = vocab_size * level_ratio * level_ratio
end = start * level_ratio end = start * level_ratio
size = end * level_ratio size = start + start
raw_dataset = MeaningDataset(start, end, size, vocab_size, level_ratio) raw_dataset = MeaningDataset(start, end, size, vocab_size, level_ratio)
train_dataset, val_dataset = raw_dataset.Split(0.95) train_dataset, val_dataset = raw_dataset.Split(0.95)
train_dataloader = BatchGroupMeaningDataloader(train_dataset, train_batch_size) train_dataloader = BatchGroupMeaningDataloader(train_dataset, train_batch_size)
@ -57,7 +74,7 @@ if __name__ == "__main__":
accelerator="cuda", accelerator="cuda",
devices=[0, 1], devices=[0, 1],
precision=precision, precision=precision,
logger=TBLogger("./", default_hp_metric=False), logger=TBLogger("./log/", name=name, version=version, default_hp_metric=False),
strategy=strategy, strategy=strategy,
max_epochs=max_epochs, max_epochs=max_epochs,
) )