Update inference for debug.

This commit is contained in:
Colin 2025-02-21 15:51:27 +08:00
parent 7cf31a1f78
commit 383c40afd7
3 changed files with 47 additions and 58 deletions

View File

@ -1,68 +1,56 @@
import argparse
from functools import partial
from itertools import chain
from typing import Dict, Tuple
import datasets
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from torch.utils.data import ConcatDataset, DataLoader, Dataset, random_split, Subset
from lit_module import LitModule from model.qwen_module import QwenModule
from wit.model.tokenization_qwen import QWenTokenizer from model.modeling_wit import QwenRunner
from logger import TBLogger from model.tokenization_qwen import QWenTokenizer
from meaning_dataset import MeaningDataset, BatchGroupMeaningDataloader
from wit.configuration import ModelConfig
pretrain_model_name = None # "qwen/Qwen-1_8B-Chat"
learning_rate = 0.0001
use_tril_attention_mask = None
precision = "32-true" # "precision:bf16-mixed,16-mixed,32-true"
train_batch_size = 1
val_batch_size = 2
num_proc = 8
max_epochs = 10
strategy = "auto"
resume_from_ckpt_path = None
seed = 42
vocab_size = 16
import configuration
import dataset.dataset as ds
if __name__ == "__main__": if __name__ == "__main__":
torch.manual_seed(seed)
config = ModelConfig() conf = configuration.TrainConfig()
config.vocab_size = vocab_size config = conf.model_config
config.hidden_size = 1024 # 128 1024 2048 32
config.num_hidden_layers = 1 # 6 12 24 3 conf.name = "bigger" # current train process name
conf.pretrain_model_name = None # "qwen/Qwen-1_8B-Chat"
conf.learning_rate = 0.0001
conf.use_tril_attention_mask = None
conf.precision = "bf16-mixed" # "precision:bf16-mixed,16-mixed,32-true"
conf.train_batch_size = 16
conf.val_batch_size = 4
conf.num_proc = 8
conf.max_epochs = 1000
conf.strategy = "auto"
conf.resume_from_ckpt_path = None
conf.seed = 42
conf.dataloader_works = 2
conf.dataset.meaning.val_mask_level = [0, 1, 2]
conf.dataset.meaning.val_mask_idx = [0, 0, -1]
config.vocab_size = 256
config.hidden_size = 128 # 128 1024 2048 32
config.num_hidden_layers = 3 # 6 12 24 3
config.num_attention_heads = 16 # 8 8 16 config.num_attention_heads = 16 # 8 8 16
lit_module = LitModule(pretrain_model_name, learning_rate, config, use_tril_attention_mask) torch.manual_seed(conf.seed)
tokenizer = QWenTokenizer("./model/wit_b64.tiktoken", "./model/wit_char.tiktoken")
level_ratio = 2 qwen = QwenModule.load_from_checkpoint(checkpoint_path = "log/bigger/version_1/checkpoints/epoch=26-step=27891.ckpt")
start = vocab_size * level_ratio * level_ratio qwen.eval()
end = start * level_ratio
size = end * level_ratio
size = 1024
raw_dataset = MeaningDataset(start, end, size, vocab_size, level_ratio)
train_dataset, val_dataset = raw_dataset.Split(0.95)
train_dataloader = BatchGroupMeaningDataloader(train_dataset, train_batch_size) runner = QwenRunner(qwen.llm)
val_dataloader = BatchGroupMeaningDataloader(val_dataset, val_batch_size)
train_dataloader, val_dataloader = ds.InitDataset(conf)
it = iter(val_dataloader) it = iter(val_dataloader)
batch = next(it) batch = next(it)
b, l = lit_module.llm(**batch, return_dict=True)
print("b ")
print(b.detach().cpu().numpy())
# batch["input_ids"] = batch["input_ids"][0:1, :] fdsafd = batch["input_ids"].numpy()
batch["input_ids"] = batch["input_ids"][1:2, :]
batch["labels"] = batch["labels"][1:2, :]
s, l = lit_module.llm(**batch, return_dict=True) print(batch["input_ids"].numpy())
print("s ") print(batch["input_ids"][0:1,:-1].numpy())
print(s.detach().cpu().numpy()) next_token = runner.ChatToken(batch["input_ids"][0:1,:-1].cuda())
print(next_token.detach().cpu().numpy())
print("data samples:")

View File

@ -71,6 +71,7 @@ class QwenModule(pl.LightningModule):
def on_validation_epoch_end(self) -> None: def on_validation_epoch_end(self) -> None:
self.log("val_loss", self.metric_loss, rank_zero_only=True) self.log("val_loss", self.metric_loss, rank_zero_only=True)
self.log("accuracy", self.metric_accuracy, rank_zero_only=True) self.log("accuracy", self.metric_accuracy, rank_zero_only=True)
self.log("hp_metric", self.metric_accuracy, rank_zero_only=True)
def configure_optimizers(self): def configure_optimizers(self):
optimizer = torch.optim.AdamW(self.trainer.model.parameters(), lr=self.learning_rate) optimizer = torch.optim.AdamW(self.trainer.model.parameters(), lr=self.learning_rate)

View File

@ -1,8 +1,8 @@
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from model.lit_module import LitModule from model.qwen_module import QwenModule
from wit.model.tokenization_qwen import QWenTokenizer from model.tokenization_qwen import QWenTokenizer
from logger import MLFLogger, TBLogger from logger import MLFLogger, TBLogger
import configuration import configuration
@ -27,8 +27,8 @@ if __name__ == "__main__":
conf.seed = 42 conf.seed = 42
conf.dataloader_works = 2 conf.dataloader_works = 2
conf.dataset.meaning.mask_level = [0, 1, 2] conf.dataset.meaning.val_mask_level = [0, 1, 2]
conf.dataset.meaning.mask_idx = [0, 0, -1] conf.dataset.meaning.val_mask_idx = [0, 0, -1]
config.vocab_size = 256 config.vocab_size = 256
config.hidden_size = 128 # 128 1024 2048 32 config.hidden_size = 128 # 128 1024 2048 32
@ -36,7 +36,7 @@ if __name__ == "__main__":
config.num_attention_heads = 16 # 8 8 16 config.num_attention_heads = 16 # 8 8 16
torch.manual_seed(conf.seed) torch.manual_seed(conf.seed)
lit_module = LitModule(conf) qwen = QwenModule(conf)
train_dataloader, val_dataloader = ds.InitDataset(conf) train_dataloader, val_dataloader = ds.InitDataset(conf)
# for i in range(len(train_dataloader)): # for i in range(len(train_dataloader)):
@ -56,7 +56,7 @@ if __name__ == "__main__":
) )
lit_trainer.fit( lit_trainer.fit(
lit_module, qwen,
train_dataloaders=train_dataloader, train_dataloaders=train_dataloader,
val_dataloaders=val_dataloader, val_dataloaders=val_dataloader,
ckpt_path=conf.resume_from_ckpt_path, ckpt_path=conf.resume_from_ckpt_path,