Update inference for debug.
This commit is contained in:
parent
7cf31a1f78
commit
383c40afd7
|
@ -1,68 +1,56 @@
|
||||||
import argparse
|
|
||||||
from functools import partial
|
|
||||||
from itertools import chain
|
|
||||||
from typing import Dict, Tuple
|
|
||||||
|
|
||||||
import datasets
|
|
||||||
import pytorch_lightning as pl
|
import pytorch_lightning as pl
|
||||||
import torch
|
import torch
|
||||||
from torch.utils.data import ConcatDataset, DataLoader, Dataset, random_split, Subset
|
|
||||||
|
|
||||||
from lit_module import LitModule
|
from model.qwen_module import QwenModule
|
||||||
from wit.model.tokenization_qwen import QWenTokenizer
|
from model.modeling_wit import QwenRunner
|
||||||
from logger import TBLogger
|
from model.tokenization_qwen import QWenTokenizer
|
||||||
|
|
||||||
from meaning_dataset import MeaningDataset, BatchGroupMeaningDataloader
|
|
||||||
from wit.configuration import ModelConfig
|
|
||||||
|
|
||||||
pretrain_model_name = None # "qwen/Qwen-1_8B-Chat"
|
|
||||||
learning_rate = 0.0001
|
|
||||||
use_tril_attention_mask = None
|
|
||||||
precision = "32-true" # "precision:bf16-mixed,16-mixed,32-true"
|
|
||||||
train_batch_size = 1
|
|
||||||
val_batch_size = 2
|
|
||||||
num_proc = 8
|
|
||||||
max_epochs = 10
|
|
||||||
strategy = "auto"
|
|
||||||
resume_from_ckpt_path = None
|
|
||||||
seed = 42
|
|
||||||
vocab_size = 16
|
|
||||||
|
|
||||||
|
import configuration
|
||||||
|
import dataset.dataset as ds
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
torch.manual_seed(seed)
|
|
||||||
|
|
||||||
config = ModelConfig()
|
conf = configuration.TrainConfig()
|
||||||
config.vocab_size = vocab_size
|
config = conf.model_config
|
||||||
config.hidden_size = 1024 # 128 1024 2048 32
|
|
||||||
config.num_hidden_layers = 1 # 6 12 24 3
|
conf.name = "bigger" # current train process name
|
||||||
|
conf.pretrain_model_name = None # "qwen/Qwen-1_8B-Chat"
|
||||||
|
conf.learning_rate = 0.0001
|
||||||
|
conf.use_tril_attention_mask = None
|
||||||
|
conf.precision = "bf16-mixed" # "precision:bf16-mixed,16-mixed,32-true"
|
||||||
|
conf.train_batch_size = 16
|
||||||
|
conf.val_batch_size = 4
|
||||||
|
conf.num_proc = 8
|
||||||
|
conf.max_epochs = 1000
|
||||||
|
conf.strategy = "auto"
|
||||||
|
conf.resume_from_ckpt_path = None
|
||||||
|
conf.seed = 42
|
||||||
|
conf.dataloader_works = 2
|
||||||
|
|
||||||
|
conf.dataset.meaning.val_mask_level = [0, 1, 2]
|
||||||
|
conf.dataset.meaning.val_mask_idx = [0, 0, -1]
|
||||||
|
|
||||||
|
config.vocab_size = 256
|
||||||
|
config.hidden_size = 128 # 128 1024 2048 32
|
||||||
|
config.num_hidden_layers = 3 # 6 12 24 3
|
||||||
config.num_attention_heads = 16 # 8 8 16
|
config.num_attention_heads = 16 # 8 8 16
|
||||||
|
|
||||||
lit_module = LitModule(pretrain_model_name, learning_rate, config, use_tril_attention_mask)
|
torch.manual_seed(conf.seed)
|
||||||
tokenizer = QWenTokenizer("./model/wit_b64.tiktoken", "./model/wit_char.tiktoken")
|
|
||||||
|
|
||||||
level_ratio = 2
|
qwen = QwenModule.load_from_checkpoint(checkpoint_path = "log/bigger/version_1/checkpoints/epoch=26-step=27891.ckpt")
|
||||||
start = vocab_size * level_ratio * level_ratio
|
qwen.eval()
|
||||||
end = start * level_ratio
|
|
||||||
size = end * level_ratio
|
|
||||||
size = 1024
|
|
||||||
raw_dataset = MeaningDataset(start, end, size, vocab_size, level_ratio)
|
|
||||||
train_dataset, val_dataset = raw_dataset.Split(0.95)
|
|
||||||
|
|
||||||
train_dataloader = BatchGroupMeaningDataloader(train_dataset, train_batch_size)
|
runner = QwenRunner(qwen.llm)
|
||||||
val_dataloader = BatchGroupMeaningDataloader(val_dataset, val_batch_size)
|
|
||||||
|
|
||||||
|
train_dataloader, val_dataloader = ds.InitDataset(conf)
|
||||||
it = iter(val_dataloader)
|
it = iter(val_dataloader)
|
||||||
batch = next(it)
|
batch = next(it)
|
||||||
b, l = lit_module.llm(**batch, return_dict=True)
|
|
||||||
print("b ")
|
|
||||||
print(b.detach().cpu().numpy())
|
|
||||||
|
|
||||||
# batch["input_ids"] = batch["input_ids"][0:1, :]
|
fdsafd = batch["input_ids"].numpy()
|
||||||
batch["input_ids"] = batch["input_ids"][1:2, :]
|
|
||||||
batch["labels"] = batch["labels"][1:2, :]
|
|
||||||
s, l = lit_module.llm(**batch, return_dict=True)
|
print(batch["input_ids"].numpy())
|
||||||
print("s ")
|
print(batch["input_ids"][0:1,:-1].numpy())
|
||||||
print(s.detach().cpu().numpy())
|
next_token = runner.ChatToken(batch["input_ids"][0:1,:-1].cuda())
|
||||||
|
print(next_token.detach().cpu().numpy())
|
||||||
|
|
||||||
print("data samples:")
|
|
||||||
|
|
|
@ -71,6 +71,7 @@ class QwenModule(pl.LightningModule):
|
||||||
def on_validation_epoch_end(self) -> None:
|
def on_validation_epoch_end(self) -> None:
|
||||||
self.log("val_loss", self.metric_loss, rank_zero_only=True)
|
self.log("val_loss", self.metric_loss, rank_zero_only=True)
|
||||||
self.log("accuracy", self.metric_accuracy, rank_zero_only=True)
|
self.log("accuracy", self.metric_accuracy, rank_zero_only=True)
|
||||||
|
self.log("hp_metric", self.metric_accuracy, rank_zero_only=True)
|
||||||
|
|
||||||
def configure_optimizers(self):
|
def configure_optimizers(self):
|
||||||
optimizer = torch.optim.AdamW(self.trainer.model.parameters(), lr=self.learning_rate)
|
optimizer = torch.optim.AdamW(self.trainer.model.parameters(), lr=self.learning_rate)
|
||||||
|
|
12
wit/train.py
12
wit/train.py
|
@ -1,8 +1,8 @@
|
||||||
import pytorch_lightning as pl
|
import pytorch_lightning as pl
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
from model.lit_module import LitModule
|
from model.qwen_module import QwenModule
|
||||||
from wit.model.tokenization_qwen import QWenTokenizer
|
from model.tokenization_qwen import QWenTokenizer
|
||||||
from logger import MLFLogger, TBLogger
|
from logger import MLFLogger, TBLogger
|
||||||
|
|
||||||
import configuration
|
import configuration
|
||||||
|
@ -27,8 +27,8 @@ if __name__ == "__main__":
|
||||||
conf.seed = 42
|
conf.seed = 42
|
||||||
conf.dataloader_works = 2
|
conf.dataloader_works = 2
|
||||||
|
|
||||||
conf.dataset.meaning.mask_level = [0, 1, 2]
|
conf.dataset.meaning.val_mask_level = [0, 1, 2]
|
||||||
conf.dataset.meaning.mask_idx = [0, 0, -1]
|
conf.dataset.meaning.val_mask_idx = [0, 0, -1]
|
||||||
|
|
||||||
config.vocab_size = 256
|
config.vocab_size = 256
|
||||||
config.hidden_size = 128 # 128 1024 2048 32
|
config.hidden_size = 128 # 128 1024 2048 32
|
||||||
|
@ -36,7 +36,7 @@ if __name__ == "__main__":
|
||||||
config.num_attention_heads = 16 # 8 8 16
|
config.num_attention_heads = 16 # 8 8 16
|
||||||
|
|
||||||
torch.manual_seed(conf.seed)
|
torch.manual_seed(conf.seed)
|
||||||
lit_module = LitModule(conf)
|
qwen = QwenModule(conf)
|
||||||
|
|
||||||
train_dataloader, val_dataloader = ds.InitDataset(conf)
|
train_dataloader, val_dataloader = ds.InitDataset(conf)
|
||||||
# for i in range(len(train_dataloader)):
|
# for i in range(len(train_dataloader)):
|
||||||
|
@ -56,7 +56,7 @@ if __name__ == "__main__":
|
||||||
)
|
)
|
||||||
|
|
||||||
lit_trainer.fit(
|
lit_trainer.fit(
|
||||||
lit_module,
|
qwen,
|
||||||
train_dataloaders=train_dataloader,
|
train_dataloaders=train_dataloader,
|
||||||
val_dataloaders=val_dataloader,
|
val_dataloaders=val_dataloader,
|
||||||
ckpt_path=conf.resume_from_ckpt_path,
|
ckpt_path=conf.resume_from_ckpt_path,
|
||||||
|
|
Loading…
Reference in New Issue