Refine query_block_output.

This commit is contained in:
Colin 2025-08-17 17:58:23 +08:00
parent ee30eb4aab
commit 3e6ff2d580
4 changed files with 90 additions and 98 deletions

View File

@ -1,3 +1,6 @@
import pickle
class ModelConfig:
def __init__(self):
self.vocab_size = 4096
@ -90,6 +93,17 @@ def class_to_dict(obj):
return str(obj)
def class_to_file(obj, file):
with open(file, "wb") as file:
pickle.dump(obj, file)
def class_from_file(file):
with open(file, "rb") as file:
obj = pickle.load(file)
return obj
# train_config = TrainConfig()
# train_config_dict = class_to_dict(train_config)
# import pprint

View File

@ -1,46 +0,0 @@
import torch
from model.light_module import LightModule
from model.light_module import ModelRunner
import numpy as np
import meaning.dataset as ds
if __name__ == "__main__":
# checkpoint_path = "log/bigger/version_0/checkpoints/epoch=72-step=360328.ckpt"
# checkpoint_path = "log/bigger/version_4/checkpoints/epoch=81-step=64288.ckpt"
checkpoint_path = "log/bigger/version_6/checkpoints/epoch=14-step=67455.ckpt"
qwen = LightModule.load_from_checkpoint(checkpoint_path=checkpoint_path)
qwen.eval()
conf = qwen.config
torch.manual_seed(conf.seed)
np.random.seed(conf.seed)
torch.cuda.manual_seed_all(conf.seed)
runner = ModelRunner(qwen.llm)
_, val = ds.InitDataset(conf).dataset
md = val.meaning_dataset
map = md.get_meaning_map()
# seq:844
# seq:849
# seq:991
# seq:995
seq = 995
node = map.get_nodetree(seq)
item, l, rank_idx, rank_all = map.get_sequence(seq)
print("len of seq:" + str(len(item)))
for i in range(1, len(item)):
itemm = [item[:i]]
batch = torch.tensor([item[:i]], dtype=torch.int64)
sorted_logits, sorted_indices = runner.ChatTokens(batch, sample=False)
next_token = sorted_indices.detach().cpu().numpy()[0][0]
if item[i] != next_token:
node.set_seq_prop(i, "ERR_" + str(next_token))
print(str(item[i]) + " " + str(next_token) + " ERROR")
node.print()

View File

@ -2,28 +2,100 @@ import torch
from model.light_module import LightModule
from model.light_module import ModelRunner
from model.modeling_wit import QWenLMHeadModel
import numpy as np
import math
import sys
import os
sys.path.append("..")
from tools import show
import configuration
import meaning.dataset as ds
def get_latest_file_safe(directory):
try:
files = [f for f in os.listdir(directory) if os.path.isfile(os.path.join(directory, f))]
if not files:
print("警告:目录中没有文件")
return None
latest = max(files, key=lambda f: os.path.getmtime(os.path.join(directory, f)))
return latest
except Exception as e:
print(f"错误: {e}")
return None
def get_dataset_set_freq(dataset):
loader = dataset
map = loader.meaning_dataset.get_meaning_map()
seqs = {}
for batch in loader:
for m in batch["meaning"]:
seqs[m] = map.get_sequence(m)
while True:
m = int(input("input meaning: "))
total = 0
for seq in seqs.values():
total = total + seq.count(m)
print(f"meaning of {m} count as {total}")
def get_inference(dataset, seq):
map = dataset.get_meaning_map()
node = map.get_nodetree(seq)
item, l, rank_idx, rank_all = map.get_sequence(seq)
print("len of seq:" + str(len(item)))
for i in range(1, len(item)):
itemm = [item[:i]]
batch = torch.tensor([item[:i]], dtype=torch.int64)
sorted_logits, sorted_indices = runner.ChatTokens(batch, sample=False)
next_token = sorted_indices.detach().cpu().numpy()[0][0]
if item[i] != next_token:
node.set_seq_prop(i, "ERR_" + str(next_token))
print(str(item[i]) + " " + str(next_token) + " ERROR")
node.print()
if __name__ == "__main__":
checkpoint_path = "log/bigger/version_6/checkpoints/epoch=14-step=67455.ckpt"
log_path = "log/bigger/version_1/"
qwen = LightModule.load_from_checkpoint(checkpoint_path=checkpoint_path)
file = get_latest_file_safe(log_path + "/checkpoints")
checkpoint_path = log_path + "checkpoints/" + file
conf = configuration.class_from_file(log_path + "conf.pkl")
model = QWenLMHeadModel(conf.model_config)
qwen = LightModule.load_from_checkpoint(checkpoint_path=checkpoint_path, model=model)
qwen.eval()
conf = qwen.config
torch.manual_seed(conf.seed)
np.random.seed(conf.seed)
runner = ModelRunner(qwen.llm)
train, val = ds.InitDataset(conf)
val = val.dataset
# get_dataset_set_freq(train.dataset)
md = val.meaning_dataset
map = md.get_meaning_map()
# seq:844
# seq:849
# seq:991
# seq:995
meaning = 995
get_inference(md, meaning)
node = map.get_nodetree(meaning)
node.print()
def DumpQK(query, key, causal_mask, index):
global relation_distance
size = query.shape[2]
@ -37,26 +109,13 @@ if __name__ == "__main__":
qk = attn_weight[0]
prePath = "./temp/" + "q@k_seq_" + str(size) + "_layer_" + str(index) + ".png"
qk = qk.cpu()
qk = torch.cat((qk, relation_distance.unsqueeze(0)), dim=0)
# qk = torch.cat((qk, relation_distance.unsqueeze(0)), dim=0)
show.DumpTensorToImage(qk, prePath)
# qk_seq.append(qk)
# qk_index = size
qwen.llm.hook_attention = DumpQK
_, val = ds.InitDataset(conf).dataset
md = val.meaning_dataset
map = md.get_meaning_map()
# seq:844
# seq:849
# seq:991
# seq:995
meaning = 995
node = map.get_nodetree(meaning)
node.print()
# current_to_common, common_to_current = map.get_level_change(meaning)
# print(current_to_common)
# print(common_to_current)

View File

@ -1,35 +0,0 @@
import pytorch_lightning as pl
import torch
from model.light_module import LightModule
from model.tokenization_qwen import QWenTokenizer
import numpy as np
import configuration
import meaning as m
if __name__ == "__main__":
checkpoint_path = "log/bigger/version_1/checkpoints/epoch=14-step=74040.ckpt"
qwen = LightModule.load_from_checkpoint(checkpoint_path=checkpoint_path)
qwen.eval()
conf = qwen.config
torch.manual_seed(conf.seed)
np.random.seed(conf.seed)
train_dataloader, val_dataloader = m.InitDataset(conf)
loader = train_dataloader.dataset
map = loader.meaning_dataset.get_meaning_map()
seqs = {}
for batch in loader:
for m in batch["meaning"]:
seqs[m] = map.get_sequence(m)
while True:
m = int(input("input meaning: "))
total = 0
for seq in seqs.values():
total = total + seq.count(m)
print(f"meaning of {m} count as {total}")