diff --git a/wit/lit_module.py b/wit/lit_module.py index af2fc4d..5e3852c 100644 --- a/wit/lit_module.py +++ b/wit/lit_module.py @@ -63,11 +63,10 @@ class LitModule(pl.LightningModule): logits = logits.contiguous().view(-1, logits.size(-1)) labels = batch["labels"][..., 1:] labels = labels.contiguous().view(-1) - label_mask = labels < self.vocab_size + label_mask = batch["mask"][..., 1:] + label_mask = label_mask.contiguous().view(-1) logits_m = logits[label_mask] labels_m = labels[label_mask] - # m = torch.max(logits, 1).indices.cpu().numpy() - # ll = labels.cpu().numpy() self.metric_accuracy.update(logits_m, labels_m) self.metric_loss.update(loss) diff --git a/wit/meaning_dataset.py b/wit/meaning_dataset.py index 416134e..7b49792 100644 --- a/wit/meaning_dataset.py +++ b/wit/meaning_dataset.py @@ -241,6 +241,8 @@ class MeaningDataset(Dataset): map = MeaningMap(size=end, vocab_size=vocab_size, max_subitem=max_subitem, use_cache=use_cache) np.random.seed(seed) + self.mask_level = None + self.mask_idx = None self.tree = [] self.seq = [] self.level = [] @@ -277,6 +279,10 @@ class MeaningDataset(Dataset): def len(self): return len(self.seq) + def set_mask(self, level=None, idx=None): + self.mask_level = level + self.mask_idx = idx + def __getitem__(self, idx): output = {} data = torch.tensor(self.seq[idx]).long() @@ -285,6 +291,10 @@ class MeaningDataset(Dataset): output["token_type_ids"] = torch.zeros(data.shape) output["tree"] = self.tree[idx] output["level"] = self.level[idx] + if self.mask_level is not None and self.mask_idx is not None: + output["mask"] = torch.tensor(self.get_seq_mask(idx, self.mask_level, self.mask_idx)) + else: + output["mask"] = torch.ones(data.shape, dtype=torch.long) return output def get_batch(self, idx_list): # must equal sequence length @@ -296,6 +306,12 @@ class MeaningDataset(Dataset): output["token_type_ids"] = torch.zeros(data.shape) output["tree"] = [self.tree[i] for i in idx_list] output["level"] = [self.level[i] for i in idx_list] + if self.mask_level is not None and self.mask_idx is not None: + output["mask"] = torch.tensor( + np.stack([self.get_seq_mask(i, self.mask_level, self.mask_idx) for i in idx_list], axis=0) + ) + else: + output["mask"] = torch.ones(data.shape, dtype=torch.long) return output def get_token(self, idx): # must equal sequence length diff --git a/wit/train.py b/wit/train.py index 1260e92..780392e 100644 --- a/wit/train.py +++ b/wit/train.py @@ -34,9 +34,14 @@ hidden_size = 1024 # 128 1024 2048 32 num_attention_heads = 16 # 8 8 16 num_hidden_layers = 3 # 6 12 24 3 -name = "vocab_ratio_level_data_hidden_head_layer" +mask_level = None +mask_idx = None + +# name = "vocab_ratio_level_data_hidden_head_layer" +name = "rank" ver = f"{vocab_size}" + "_" + f"{level_ratio}" + "_" + f"{level}" + "_" + f"{dataset_level}" ver = ver + "_" + f"{hidden_size}" + "_" + f"{num_attention_heads}" + "_" + f"{num_hidden_layers}" +ver = ver + "_" + f"{mask_level}" + "_" + f"{mask_idx}" if __name__ == "__main__": torch.manual_seed(seed) @@ -53,6 +58,7 @@ if __name__ == "__main__": start = vocab_size * (level_ratio**level) size = vocab_size * (level_ratio**dataset_level) raw_dataset = MeaningDataset(start, start + size, size, vocab_size, level_ratio) + raw_dataset.set_mask(mask_level, mask_idx) train_dataset, val_dataset = raw_dataset.split(0.9) train_dataloader = BatchGroupMeaningDataloader(train_dataset, train_batch_size) val_dataloader = BatchGroupMeaningDataloader(val_dataset, val_batch_size)