Unsuper train with max confidense of conv output

This commit is contained in:
Colin 2024-10-04 01:30:18 +08:00
parent 81f203ce59
commit 45d5701835
1 changed files with 43 additions and 26 deletions

View File

@ -36,22 +36,23 @@ class ConvNet(nn.Module):
self.fc1 = nn.Linear(1 * 4 * 4, 10) self.fc1 = nn.Linear(1 * 4 * 4, 10)
def forward(self, x): def forward(self, x):
x = self.pool(self.conv1(x)) x = self.forward_unsuper(x)
x = self.pool(x)
x = self.pool(self.conv2(x)) x = self.pool(self.conv2(x))
x = x.view(x.shape[0], -1) x = x.view(x.shape[0], -1)
x = self.fc1(x) x = self.fc1(x)
return x return x
def forward_unsuper(self, x): def forward_unsuper(self, x):
x = self.conv1(x) weight = self.conv1.weight.reshape(self.conv1.weight.shape[0], -1)
# x = self.pool(self.conv1(x)) weight = weight.permute(1, 0)
return x mean = torch.mean(weight, dim=0)
weight = weight - mean
def forward_finetune(self, x): sum = torch.sum(torch.abs(weight), dim=0)
x = self.pool(self.conv1(x)) weight = weight / sum
x = self.pool(self.conv2(x)) weight = weight.permute(1, 0)
x = x.view(x.shape[0], -1) weight = weight.reshape(self.conv1.weight.shape)
x = self.fc1(x) x = torch.conv2d(x, weight)
return x return x
def printFector(self, x, label, dir=""): def printFector(self, x, label, dir=""):
@ -104,7 +105,7 @@ model = ConvNet().to(device)
model.train() model.train()
# Train the model unsuper # Train the model unsuper
epochs = 2 epochs = 10
model.conv1.weight.requires_grad = True model.conv1.weight.requires_grad = True
model.conv2.weight.requires_grad = False model.conv2.weight.requires_grad = False
model.fc1.weight.requires_grad = False model.fc1.weight.requires_grad = False
@ -114,24 +115,40 @@ for epoch in range(epochs):
images = images.to(device) images = images.to(device)
outputs = model.forward_unsuper(images) outputs = model.forward_unsuper(images)
outputs = outputs.permute(1, 0, 2, 3) # 64 8 24 24 -> 8 64 24 24 # outputs = outputs.permute(0, 2, 3, 1) # 64 8 24 24 -> 64 24 24 8
sample = outputs.reshape(outputs.shape[0], -1) # -> 8 36864 # sample = outputs.reshape(-1, outputs.shape[3]) # -> 36864 8
# abs = torch.abs(sample)
# max, max_index = torch.max(abs, dim=1)
# min, min_index = torch.min(abs, dim=1)
# label = sample * 0.9
# all = range(0, label.shape[0])
# label[all, max_index] = label[all, max_index]*1.1
# loss = F.l1_loss(sample, label)
# model.conv1.weight.grad = None
# loss.backward()
sample_mean = torch.mean(sample, dim=1, keepdim=True) outputs = outputs.permute(0, 2, 3, 1) # 64 8 24 24 -> 64 24 24 8
diff_mean = torch.mean(torch.abs(sample - sample_mean), dim=1, keepdim=True) sample = outputs.reshape(outputs.shape[0], -1, outputs.shape[3]) # -> 64 24x24 8
diff_ratio = (sample - sample_mean) / diff_mean abs = torch.abs(sample)
diff_ratio_mean = torch.mean(diff_ratio * diff_ratio, dim=1) sum = torch.sum(abs, dim=1, keepdim=False)
label = diff_ratio_mean * 0.5 max, max_index = torch.max(sum, dim=1)
loss = F.l1_loss(diff_ratio_mean, label) label = sample * 0.9
all = range(0, label.shape[0])
all_wh = range(0, 24 * 24)
label[all, :, max_index] = label[all, :, max_index] * 1.1
loss = F.l1_loss(sample, label)
model.conv1.weight.grad = None model.conv1.weight.grad = None
loss.backward() loss.backward()
grad = model.conv1.weight.data # show.DumpTensorToImage(images.view(-1, images.shape[2], images.shape[3]), "input_image.png", Contrast=[0, 1.0])
grad = grad.view(8, -1) # w = model.conv1.weight.data
grad_mean = torch.mean(grad, dim=1) # show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]), "conv1_weight.png", Contrast=[-1.0, 1.0])
max, index = torch.max(grad_mean, dim=0) # w = model.conv1.weight.grad
# show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]).cpu(), "conv1_weight_grad.png")
model.conv1.weight.data = model.conv1.weight.data - model.conv1.weight.grad * 1000
# w = model.conv1.weight.data
# show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]), "conv1_weight_update.png", Contrast=[-1.0, 1.0])
model.conv1.weight.data[index] = model.conv1.weight.data[index] - model.conv1.weight.grad[index] * 0.2
if (i + 1) % 100 == 0: if (i + 1) % 100 == 0:
print(f"Epoch [{epoch+1}/{epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.8f}") print(f"Epoch [{epoch+1}/{epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.8f}")
@ -146,7 +163,7 @@ for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader): for i, (images, labels) in enumerate(train_loader):
images = images.to(device) images = images.to(device)
labels = labels.to(device) labels = labels.to(device)
outputs = model.forward_finetune(images) outputs = model(images)
loss = criterion(outputs, labels) loss = criterion(outputs, labels)
optimizer.zero_grad() optimizer.zero_grad()
loss.backward() loss.backward()
@ -154,7 +171,7 @@ for epoch in range(num_epochs):
if (i + 1) % 100 == 0: if (i + 1) % 100 == 0:
print(f"Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.4f}") print(f"Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.4f}")
print("Finished Training") # print("Finished Training")
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False)
test_loader = iter(test_loader) test_loader = iter(test_loader)