Unsuper train with max confidense of conv output
This commit is contained in:
		
							parent
							
								
									81f203ce59
								
							
						
					
					
						commit
						45d5701835
					
				| 
						 | 
				
			
			@ -36,22 +36,23 @@ class ConvNet(nn.Module):
 | 
			
		|||
        self.fc1 = nn.Linear(1 * 4 * 4, 10)
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        x = self.pool(self.conv1(x))
 | 
			
		||||
        x = self.forward_unsuper(x)
 | 
			
		||||
        x = self.pool(x)
 | 
			
		||||
        x = self.pool(self.conv2(x))
 | 
			
		||||
        x = x.view(x.shape[0], -1)
 | 
			
		||||
        x = self.fc1(x)
 | 
			
		||||
        return x
 | 
			
		||||
 | 
			
		||||
    def forward_unsuper(self, x):
 | 
			
		||||
        x = self.conv1(x)
 | 
			
		||||
        # x = self.pool(self.conv1(x))
 | 
			
		||||
        return x
 | 
			
		||||
 | 
			
		||||
    def forward_finetune(self, x):
 | 
			
		||||
        x = self.pool(self.conv1(x))
 | 
			
		||||
        x = self.pool(self.conv2(x))
 | 
			
		||||
        x = x.view(x.shape[0], -1)
 | 
			
		||||
        x = self.fc1(x)
 | 
			
		||||
        weight = self.conv1.weight.reshape(self.conv1.weight.shape[0], -1)
 | 
			
		||||
        weight = weight.permute(1, 0)
 | 
			
		||||
        mean = torch.mean(weight, dim=0)
 | 
			
		||||
        weight = weight - mean
 | 
			
		||||
        sum = torch.sum(torch.abs(weight), dim=0)
 | 
			
		||||
        weight = weight / sum
 | 
			
		||||
        weight = weight.permute(1, 0)
 | 
			
		||||
        weight = weight.reshape(self.conv1.weight.shape)
 | 
			
		||||
        x = torch.conv2d(x, weight)
 | 
			
		||||
        return x
 | 
			
		||||
 | 
			
		||||
    def printFector(self, x, label, dir=""):
 | 
			
		||||
| 
						 | 
				
			
			@ -104,7 +105,7 @@ model = ConvNet().to(device)
 | 
			
		|||
model.train()
 | 
			
		||||
 | 
			
		||||
# Train the model unsuper
 | 
			
		||||
epochs = 2
 | 
			
		||||
epochs = 10
 | 
			
		||||
model.conv1.weight.requires_grad = True
 | 
			
		||||
model.conv2.weight.requires_grad = False
 | 
			
		||||
model.fc1.weight.requires_grad = False
 | 
			
		||||
| 
						 | 
				
			
			@ -114,24 +115,40 @@ for epoch in range(epochs):
 | 
			
		|||
        images = images.to(device)
 | 
			
		||||
        outputs = model.forward_unsuper(images)
 | 
			
		||||
 | 
			
		||||
        outputs = outputs.permute(1, 0, 2, 3)  # 64 8 24 24 -> 8 64 24 24
 | 
			
		||||
        sample = outputs.reshape(outputs.shape[0], -1)  # -> 8 36864
 | 
			
		||||
        # outputs = outputs.permute(0, 2, 3, 1)  # 64 8 24 24 -> 64 24 24 8
 | 
			
		||||
        # sample = outputs.reshape(-1, outputs.shape[3])  # -> 36864 8
 | 
			
		||||
        # abs = torch.abs(sample)
 | 
			
		||||
        # max, max_index = torch.max(abs, dim=1)
 | 
			
		||||
        # min, min_index = torch.min(abs, dim=1)
 | 
			
		||||
        # label = sample * 0.9
 | 
			
		||||
        # all = range(0, label.shape[0])
 | 
			
		||||
        # label[all, max_index] = label[all, max_index]*1.1
 | 
			
		||||
        # loss = F.l1_loss(sample, label)
 | 
			
		||||
        # model.conv1.weight.grad = None
 | 
			
		||||
        # loss.backward()
 | 
			
		||||
 | 
			
		||||
        sample_mean = torch.mean(sample, dim=1, keepdim=True)
 | 
			
		||||
        diff_mean = torch.mean(torch.abs(sample - sample_mean), dim=1, keepdim=True)
 | 
			
		||||
        diff_ratio = (sample - sample_mean) / diff_mean
 | 
			
		||||
        diff_ratio_mean = torch.mean(diff_ratio * diff_ratio, dim=1)
 | 
			
		||||
        label = diff_ratio_mean * 0.5
 | 
			
		||||
        loss = F.l1_loss(diff_ratio_mean, label)
 | 
			
		||||
        outputs = outputs.permute(0, 2, 3, 1)  # 64 8 24 24 -> 64 24 24 8
 | 
			
		||||
        sample = outputs.reshape(outputs.shape[0], -1, outputs.shape[3])  # -> 64 24x24 8
 | 
			
		||||
        abs = torch.abs(sample)
 | 
			
		||||
        sum = torch.sum(abs, dim=1, keepdim=False)
 | 
			
		||||
        max, max_index = torch.max(sum, dim=1)
 | 
			
		||||
        label = sample * 0.9
 | 
			
		||||
        all = range(0, label.shape[0])
 | 
			
		||||
        all_wh = range(0, 24 * 24)
 | 
			
		||||
        label[all, :, max_index] = label[all, :, max_index] * 1.1
 | 
			
		||||
        loss = F.l1_loss(sample, label)
 | 
			
		||||
        model.conv1.weight.grad = None
 | 
			
		||||
        loss.backward()
 | 
			
		||||
 | 
			
		||||
        grad = model.conv1.weight.data
 | 
			
		||||
        grad = grad.view(8, -1)
 | 
			
		||||
        grad_mean = torch.mean(grad, dim=1)
 | 
			
		||||
        max, index = torch.max(grad_mean, dim=0)
 | 
			
		||||
        # show.DumpTensorToImage(images.view(-1, images.shape[2], images.shape[3]), "input_image.png", Contrast=[0, 1.0])
 | 
			
		||||
        # w = model.conv1.weight.data
 | 
			
		||||
        # show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]), "conv1_weight.png", Contrast=[-1.0, 1.0])
 | 
			
		||||
        # w = model.conv1.weight.grad
 | 
			
		||||
        # show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]).cpu(), "conv1_weight_grad.png")
 | 
			
		||||
        model.conv1.weight.data = model.conv1.weight.data - model.conv1.weight.grad * 1000
 | 
			
		||||
        # w = model.conv1.weight.data
 | 
			
		||||
        # show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]), "conv1_weight_update.png", Contrast=[-1.0, 1.0])
 | 
			
		||||
 | 
			
		||||
        model.conv1.weight.data[index] = model.conv1.weight.data[index] - model.conv1.weight.grad[index] * 0.2
 | 
			
		||||
        if (i + 1) % 100 == 0:
 | 
			
		||||
            print(f"Epoch [{epoch+1}/{epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.8f}")
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -146,7 +163,7 @@ for epoch in range(num_epochs):
 | 
			
		|||
    for i, (images, labels) in enumerate(train_loader):
 | 
			
		||||
        images = images.to(device)
 | 
			
		||||
        labels = labels.to(device)
 | 
			
		||||
        outputs = model.forward_finetune(images)
 | 
			
		||||
        outputs = model(images)
 | 
			
		||||
        loss = criterion(outputs, labels)
 | 
			
		||||
        optimizer.zero_grad()
 | 
			
		||||
        loss.backward()
 | 
			
		||||
| 
						 | 
				
			
			@ -154,7 +171,7 @@ for epoch in range(num_epochs):
 | 
			
		|||
        if (i + 1) % 100 == 0:
 | 
			
		||||
            print(f"Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.4f}")
 | 
			
		||||
 | 
			
		||||
print("Finished Training")
 | 
			
		||||
# print("Finished Training")
 | 
			
		||||
 | 
			
		||||
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False)
 | 
			
		||||
test_loader = iter(test_loader)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue