Unsuper train with max confidense of conv output
This commit is contained in:
parent
81f203ce59
commit
45d5701835
|
@ -36,22 +36,23 @@ class ConvNet(nn.Module):
|
|||
self.fc1 = nn.Linear(1 * 4 * 4, 10)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.pool(self.conv1(x))
|
||||
x = self.forward_unsuper(x)
|
||||
x = self.pool(x)
|
||||
x = self.pool(self.conv2(x))
|
||||
x = x.view(x.shape[0], -1)
|
||||
x = self.fc1(x)
|
||||
return x
|
||||
|
||||
def forward_unsuper(self, x):
|
||||
x = self.conv1(x)
|
||||
# x = self.pool(self.conv1(x))
|
||||
return x
|
||||
|
||||
def forward_finetune(self, x):
|
||||
x = self.pool(self.conv1(x))
|
||||
x = self.pool(self.conv2(x))
|
||||
x = x.view(x.shape[0], -1)
|
||||
x = self.fc1(x)
|
||||
weight = self.conv1.weight.reshape(self.conv1.weight.shape[0], -1)
|
||||
weight = weight.permute(1, 0)
|
||||
mean = torch.mean(weight, dim=0)
|
||||
weight = weight - mean
|
||||
sum = torch.sum(torch.abs(weight), dim=0)
|
||||
weight = weight / sum
|
||||
weight = weight.permute(1, 0)
|
||||
weight = weight.reshape(self.conv1.weight.shape)
|
||||
x = torch.conv2d(x, weight)
|
||||
return x
|
||||
|
||||
def printFector(self, x, label, dir=""):
|
||||
|
@ -104,7 +105,7 @@ model = ConvNet().to(device)
|
|||
model.train()
|
||||
|
||||
# Train the model unsuper
|
||||
epochs = 2
|
||||
epochs = 10
|
||||
model.conv1.weight.requires_grad = True
|
||||
model.conv2.weight.requires_grad = False
|
||||
model.fc1.weight.requires_grad = False
|
||||
|
@ -114,24 +115,40 @@ for epoch in range(epochs):
|
|||
images = images.to(device)
|
||||
outputs = model.forward_unsuper(images)
|
||||
|
||||
outputs = outputs.permute(1, 0, 2, 3) # 64 8 24 24 -> 8 64 24 24
|
||||
sample = outputs.reshape(outputs.shape[0], -1) # -> 8 36864
|
||||
# outputs = outputs.permute(0, 2, 3, 1) # 64 8 24 24 -> 64 24 24 8
|
||||
# sample = outputs.reshape(-1, outputs.shape[3]) # -> 36864 8
|
||||
# abs = torch.abs(sample)
|
||||
# max, max_index = torch.max(abs, dim=1)
|
||||
# min, min_index = torch.min(abs, dim=1)
|
||||
# label = sample * 0.9
|
||||
# all = range(0, label.shape[0])
|
||||
# label[all, max_index] = label[all, max_index]*1.1
|
||||
# loss = F.l1_loss(sample, label)
|
||||
# model.conv1.weight.grad = None
|
||||
# loss.backward()
|
||||
|
||||
sample_mean = torch.mean(sample, dim=1, keepdim=True)
|
||||
diff_mean = torch.mean(torch.abs(sample - sample_mean), dim=1, keepdim=True)
|
||||
diff_ratio = (sample - sample_mean) / diff_mean
|
||||
diff_ratio_mean = torch.mean(diff_ratio * diff_ratio, dim=1)
|
||||
label = diff_ratio_mean * 0.5
|
||||
loss = F.l1_loss(diff_ratio_mean, label)
|
||||
outputs = outputs.permute(0, 2, 3, 1) # 64 8 24 24 -> 64 24 24 8
|
||||
sample = outputs.reshape(outputs.shape[0], -1, outputs.shape[3]) # -> 64 24x24 8
|
||||
abs = torch.abs(sample)
|
||||
sum = torch.sum(abs, dim=1, keepdim=False)
|
||||
max, max_index = torch.max(sum, dim=1)
|
||||
label = sample * 0.9
|
||||
all = range(0, label.shape[0])
|
||||
all_wh = range(0, 24 * 24)
|
||||
label[all, :, max_index] = label[all, :, max_index] * 1.1
|
||||
loss = F.l1_loss(sample, label)
|
||||
model.conv1.weight.grad = None
|
||||
loss.backward()
|
||||
|
||||
grad = model.conv1.weight.data
|
||||
grad = grad.view(8, -1)
|
||||
grad_mean = torch.mean(grad, dim=1)
|
||||
max, index = torch.max(grad_mean, dim=0)
|
||||
# show.DumpTensorToImage(images.view(-1, images.shape[2], images.shape[3]), "input_image.png", Contrast=[0, 1.0])
|
||||
# w = model.conv1.weight.data
|
||||
# show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]), "conv1_weight.png", Contrast=[-1.0, 1.0])
|
||||
# w = model.conv1.weight.grad
|
||||
# show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]).cpu(), "conv1_weight_grad.png")
|
||||
model.conv1.weight.data = model.conv1.weight.data - model.conv1.weight.grad * 1000
|
||||
# w = model.conv1.weight.data
|
||||
# show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]), "conv1_weight_update.png", Contrast=[-1.0, 1.0])
|
||||
|
||||
model.conv1.weight.data[index] = model.conv1.weight.data[index] - model.conv1.weight.grad[index] * 0.2
|
||||
if (i + 1) % 100 == 0:
|
||||
print(f"Epoch [{epoch+1}/{epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.8f}")
|
||||
|
||||
|
@ -146,7 +163,7 @@ for epoch in range(num_epochs):
|
|||
for i, (images, labels) in enumerate(train_loader):
|
||||
images = images.to(device)
|
||||
labels = labels.to(device)
|
||||
outputs = model.forward_finetune(images)
|
||||
outputs = model(images)
|
||||
loss = criterion(outputs, labels)
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
|
@ -154,7 +171,7 @@ for epoch in range(num_epochs):
|
|||
if (i + 1) % 100 == 0:
|
||||
print(f"Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.4f}")
|
||||
|
||||
print("Finished Training")
|
||||
# print("Finished Training")
|
||||
|
||||
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False)
|
||||
test_loader = iter(test_loader)
|
||||
|
|
Loading…
Reference in New Issue