Add device set.
| 
		 Before Width: | Height: | Size: 2.8 KiB After Width: | Height: | Size: 2.8 KiB  | 
| 
		 Before Width: | Height: | Size: 191 B After Width: | Height: | Size: 191 B  | 
| 
		 Before Width: | Height: | Size: 187 B After Width: | Height: | Size: 187 B  | 
| 
		 Before Width: | Height: | Size: 1018 B After Width: | Height: | Size: 1020 B  | 
| 
		 Before Width: | Height: | Size: 2.0 KiB After Width: | Height: | Size: 2.0 KiB  | 
| 
		 Before Width: | Height: | Size: 1.8 KiB After Width: | Height: | Size: 1.8 KiB  | 
| 
		 Before Width: | Height: | Size: 84 B After Width: | Height: | Size: 84 B  | 
| 
		 Before Width: | Height: | Size: 2.4 KiB After Width: | Height: | Size: 2.4 KiB  | 
| 
		 Before Width: | Height: | Size: 1.1 KiB After Width: | Height: | Size: 1.1 KiB  | 
| 
						 | 
					@ -13,8 +13,8 @@ seed = 4321
 | 
				
			||||||
torch.manual_seed(seed)
 | 
					torch.manual_seed(seed)
 | 
				
			||||||
torch.cuda.manual_seed_all(seed)
 | 
					torch.cuda.manual_seed_all(seed)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Device configuration
 | 
					 | 
				
			||||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 | 
					device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 | 
				
			||||||
 | 
					device = torch.device("mps")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Hyper-parameters
 | 
					# Hyper-parameters
 | 
				
			||||||
num_epochs = 1
 | 
					num_epochs = 1
 | 
				
			||||||
| 
						 | 
					@ -51,25 +51,25 @@ class ConvNet(nn.Module):
 | 
				
			||||||
        return x
 | 
					        return x
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def printFector(self, x, label):
 | 
					    def printFector(self, x, label):
 | 
				
			||||||
        show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]), "input_image.png")
 | 
					        show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]).cpu(), "input_image.png")
 | 
				
			||||||
        x = self.conv1(x)
 | 
					        x = self.conv1(x)
 | 
				
			||||||
        w = self.conv1.weight
 | 
					        w = self.conv1.weight
 | 
				
			||||||
        show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]), "conv1_weight.png")
 | 
					        show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]).cpu(), "conv1_weight.png")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]), "conv1_output.png")
 | 
					        show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]).cpu(), "conv1_output.png")
 | 
				
			||||||
        x = self.pool(F.relu(x))
 | 
					        x = self.pool(F.relu(x))
 | 
				
			||||||
        x = self.conv2(x)
 | 
					        x = self.conv2(x)
 | 
				
			||||||
        w = self.conv2.weight
 | 
					        w = self.conv2.weight
 | 
				
			||||||
        show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]), "conv2_weight.png")
 | 
					        show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]).cpu(), "conv2_weight.png")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]), "conv2_output.png")
 | 
					        show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]).cpu(), "conv2_output.png")
 | 
				
			||||||
        x = self.pool(F.relu(x))
 | 
					        x = self.pool(F.relu(x))
 | 
				
			||||||
        x = x.view(-1, 8 * 5 * 5)
 | 
					        x = x.view(-1, 8 * 5 * 5)
 | 
				
			||||||
        x = self.fc1(x)
 | 
					        x = self.fc1(x)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        show.DumpTensorToImage(self.fc1.weight.view(-1, 10, 10).permute(2, 0, 1), "fc_weight.png")
 | 
					        show.DumpTensorToImage(self.fc1.weight.view(-1, 10, 10).permute(2, 0, 1).cpu(), "fc_weight.png")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        show.DumpTensorToImage(x.view(-1), "fc_output.png")
 | 
					        show.DumpTensorToImage(x.view(-1).cpu(), "fc_output.png")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        criterion = nn.CrossEntropyLoss()
 | 
					        criterion = nn.CrossEntropyLoss()
 | 
				
			||||||
        loss = criterion(x, label)
 | 
					        loss = criterion(x, label)
 | 
				
			||||||
| 
						 | 
					@ -77,10 +77,10 @@ class ConvNet(nn.Module):
 | 
				
			||||||
        loss.backward()
 | 
					        loss.backward()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        w = self.conv1.weight.grad
 | 
					        w = self.conv1.weight.grad
 | 
				
			||||||
        show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]), "conv1_weight_grad.png")
 | 
					        show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]).cpu(), "conv1_weight_grad.png")
 | 
				
			||||||
        w = self.conv2.weight.grad
 | 
					        w = self.conv2.weight.grad
 | 
				
			||||||
        show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]), "conv2_weight_grad.png")
 | 
					        show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]).cpu(), "conv2_weight_grad.png")
 | 
				
			||||||
        show.DumpTensorToImage(self.fc1.weight.grad.view(-1, 10, 10).permute(2, 0, 1), "fc_weight_grad.png")
 | 
					        show.DumpTensorToImage(self.fc1.weight.grad.view(-1, 10, 10).permute(2, 0, 1).cpu(), "fc_weight_grad.png")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
model = ConvNet().to(device)
 | 
					model = ConvNet().to(device)
 | 
				
			||||||
| 
						 | 
					@ -109,6 +109,8 @@ for epoch in range(num_epochs):
 | 
				
			||||||
            print(f"Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.4f}")
 | 
					            print(f"Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.4f}")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
for images, labels in test_loader:
 | 
					for images, labels in test_loader:
 | 
				
			||||||
 | 
					    images = images.to(device)
 | 
				
			||||||
 | 
					    labels = labels.to(device)
 | 
				
			||||||
    model.printFector(images, labels)
 | 
					    model.printFector(images, labels)
 | 
				
			||||||
    break
 | 
					    break
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||