Add GPU stress test.
This commit is contained in:
parent
c7391b090e
commit
4c7fdbe817
|
@ -0,0 +1,82 @@
|
|||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from torch.utils.data import DataLoader, Dataset, random_split
|
||||
|
||||
from lit_module import LitModule
|
||||
from logger import TBLogger
|
||||
|
||||
from wit.configuration import ModelConfig
|
||||
|
||||
pretrain_model_name = None # "qwen/Qwen-1_8B-Chat"
|
||||
learning_rate = 0.0001
|
||||
use_tril_attention_mask = None
|
||||
precision = "32-true" # "precision:bf16-mixed,16-mixed,32-true"
|
||||
train_batch_size = 4
|
||||
val_batch_size = 8
|
||||
num_proc = 8
|
||||
max_epochs = 1000
|
||||
strategy = "auto"
|
||||
resume_from_ckpt_path = None
|
||||
seed = 42
|
||||
|
||||
|
||||
class StressDataset(Dataset):
|
||||
def __init__(self, start=1, end=128, size=32768): # 1048576 32768
|
||||
self.size = size
|
||||
self.features = []
|
||||
self.data = torch.randint(start, end, [size, 2048]).long()
|
||||
|
||||
def __len__(self):
|
||||
return self.size
|
||||
|
||||
def __getitem__(self, idx):
|
||||
output = {}
|
||||
data = self.data[idx]
|
||||
output["input_ids"] = data
|
||||
output["labels"] = data.clone()
|
||||
output["token_type_ids"] = torch.zeros(data.shape)
|
||||
return output
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
torch.manual_seed(seed)
|
||||
|
||||
config = ModelConfig()
|
||||
config.vocab_size = 4096
|
||||
config.hidden_size = 1024 # 128 1024 2048 32
|
||||
config.num_hidden_layers = 6 # 6 12 24 3
|
||||
config.num_attention_heads = 8 # 8 8 16
|
||||
|
||||
lit_module = LitModule(pretrain_model_name, learning_rate, config, use_tril_attention_mask)
|
||||
|
||||
raw_dataset = StressDataset()
|
||||
train_dataset, val_dataset = random_split(raw_dataset, [0.95, 0.05])
|
||||
|
||||
train_dataloader = DataLoader(
|
||||
train_dataset,
|
||||
batch_size=train_batch_size,
|
||||
num_workers=num_proc,
|
||||
persistent_workers=True,
|
||||
shuffle=True,
|
||||
)
|
||||
val_dataloader = DataLoader(
|
||||
val_dataset,
|
||||
batch_size=val_batch_size,
|
||||
num_workers=num_proc,
|
||||
persistent_workers=True,
|
||||
)
|
||||
|
||||
lit_trainer = pl.Trainer(
|
||||
accelerator="gpu",
|
||||
devices=2,
|
||||
precision=precision,
|
||||
logger=TBLogger("./", default_hp_metric=False),
|
||||
strategy=strategy,
|
||||
max_epochs=max_epochs,
|
||||
)
|
||||
lit_trainer.fit(
|
||||
lit_module,
|
||||
train_dataloaders=train_dataloader,
|
||||
val_dataloaders=val_dataloader,
|
||||
ckpt_path=resume_from_ckpt_path,
|
||||
)
|
Loading…
Reference in New Issue