Refine qwen model.
This commit is contained in:
parent
9386d044b6
commit
5cf6e8b013
10
qwen/demo.py
10
qwen/demo.py
|
@ -74,6 +74,16 @@ print(decode_tokens)
|
|||
|
||||
|
||||
|
||||
# <|im_start|>system
|
||||
# You are a helpful assistant.<|im_end|>
|
||||
# <|im_start|>user
|
||||
# 你好<|im_end|>
|
||||
# <|im_start|>assistant
|
||||
# 莎是现代汉语的男性的名字,出自《诗经》中的“采采卷耳
|
||||
|
||||
|
||||
|
||||
|
||||
# <|im_start|>system
|
||||
# You are a helpful assistant.<|im_end|>
|
||||
# <|im_start|>user
|
||||
|
|
|
@ -37,11 +37,15 @@ from qwen_generation_utils import (
|
|||
StopWordsLogitsProcessor,
|
||||
)
|
||||
|
||||
import sys
|
||||
sys.path.append("..")
|
||||
from tools import show
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class QWenAttention(nn.Module):
|
||||
def __init__(self, config):
|
||||
def __init__(self, config, index):
|
||||
super().__init__()
|
||||
|
||||
self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
|
||||
|
@ -74,6 +78,7 @@ class QWenAttention(nn.Module):
|
|||
cache_dtype = torch.float
|
||||
self.cache_qmax = torch.tensor(torch.iinfo(torch.uint8).max, dtype=cache_dtype)
|
||||
self.cache_qmin = torch.tensor(torch.iinfo(torch.uint8).min, dtype=cache_dtype)
|
||||
self.index = index
|
||||
|
||||
def _split_heads(self, tensor, num_heads, attn_head_size):
|
||||
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
|
||||
|
@ -139,6 +144,11 @@ class QWenAttention(nn.Module):
|
|||
else:
|
||||
attention_mask = causal_mask
|
||||
|
||||
|
||||
# qk = query @ key.transpose(-2, -1)
|
||||
# qk = qk[0]
|
||||
# show.DumpTensorToImage(qk,"q_matmul_k_layer_"+str(self.index)+".png")
|
||||
|
||||
attn_output = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask).transpose(1, 2)
|
||||
context_layer = self._merge_heads(attn_output, self.num_heads, self.head_dim)
|
||||
attn_output = self.c_proj(context_layer)
|
||||
|
@ -163,7 +173,7 @@ class QWenMLP(nn.Module):
|
|||
|
||||
|
||||
class QWenBlock(nn.Module):
|
||||
def __init__(self, config):
|
||||
def __init__(self, config, index):
|
||||
super().__init__()
|
||||
hidden_size = config.hidden_size
|
||||
|
||||
|
@ -171,12 +181,13 @@ class QWenBlock(nn.Module):
|
|||
hidden_size,
|
||||
eps=config.layer_norm_epsilon,
|
||||
)
|
||||
self.attn = QWenAttention(config)
|
||||
self.attn = QWenAttention(config, index)
|
||||
self.ln_2 = RMSNorm(
|
||||
hidden_size,
|
||||
eps=config.layer_norm_epsilon,
|
||||
)
|
||||
self.mlp = QWenMLP(config)
|
||||
self.index = index
|
||||
|
||||
def forward(
|
||||
self,
|
||||
|
@ -240,7 +251,7 @@ class QWenModel(QWenPreTrainedModel):
|
|||
dim = self.rotary_ndims if self.rotary_ndims is not None else config.kv_channels
|
||||
self.rotary_emb = RotaryEmbedding(dim, base=config.rotary_emb_base)
|
||||
|
||||
self.h = nn.ModuleList([QWenBlock(config) for i in range(config.num_hidden_layers)])
|
||||
self.h = nn.ModuleList([QWenBlock(config, i) for i in range(config.num_hidden_layers)])
|
||||
self.ln_f = RMSNorm(
|
||||
self.embed_dim,
|
||||
eps=config.layer_norm_epsilon,
|
||||
|
@ -460,7 +471,6 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|||
inputs: Optional[torch.Tensor] = None,
|
||||
stop_words_ids = [],
|
||||
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
|
||||
streamer: Optional["BaseStreamer"] = None,
|
||||
**kwargs,
|
||||
) -> Union[GenerateOutput, torch.LongTensor]:
|
||||
generation_config = self.generation_config
|
||||
|
@ -508,9 +518,6 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|||
# 5. Prepare `input_ids` which will be used for auto-regressive generation
|
||||
input_ids = inputs_tensor if model_input_name == "input_ids" else model_kwargs.pop("input_ids")
|
||||
|
||||
if streamer is not None:
|
||||
streamer.put(input_ids.cpu())
|
||||
|
||||
# 6. Prepare `max_length` depending on other stopping criteria.
|
||||
input_ids_length = input_ids.shape[-1]
|
||||
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
|
||||
|
@ -546,10 +553,8 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|||
# 13. run sample
|
||||
|
||||
pad_token_id=generation_config.pad_token_id
|
||||
eos_token_id=generation_config.eos_token_id
|
||||
streamer=streamer
|
||||
eos_token_id_tensor=torch.tensor([generation_config.eos_token_id]).to(input_ids.device)
|
||||
|
||||
|
||||
# init values
|
||||
stopping_criteria = self._get_stopping_criteria(
|
||||
generation_config=generation_config, stopping_criteria=StoppingCriteriaList()
|
||||
|
@ -557,12 +562,6 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|||
|
||||
logits_warper = self._get_logits_warper(generation_config)
|
||||
|
||||
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
|
||||
eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
|
||||
if isinstance(eos_token_id, int):
|
||||
eos_token_id = [eos_token_id]
|
||||
eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
|
||||
|
||||
# init attention / hidden states / scores tuples
|
||||
scores = None
|
||||
|
||||
|
@ -588,25 +587,19 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|||
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
||||
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
||||
|
||||
# finished sentences should have their next token be a padding token
|
||||
if eos_token_id is not None:
|
||||
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
|
||||
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
|
||||
|
||||
# update generated ids, model inputs, and length for next step
|
||||
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
||||
if streamer is not None:
|
||||
streamer.put(next_tokens.cpu())
|
||||
model_kwargs = self._update_model_kwargs_for_generation(outputs, model_kwargs, is_encoder_decoder=False)
|
||||
|
||||
# if eos_token was found in one sentence, set sentence to finished
|
||||
if eos_token_id_tensor is not None:
|
||||
unfinished_sequences = unfinished_sequences.mul(
|
||||
next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
|
||||
)
|
||||
unfinished_sequences = unfinished_sequences.mul(
|
||||
next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
|
||||
)
|
||||
|
||||
# stop when each sentence is finished
|
||||
if unfinished_sequences.max() == 0:
|
||||
this_peer_finished = True
|
||||
# stop when each sentence is finished
|
||||
if unfinished_sequences.max() == 0:
|
||||
this_peer_finished = True
|
||||
|
||||
# stop if we exceed the maximum length
|
||||
if stopping_criteria(input_ids, scores):
|
||||
|
@ -615,9 +608,6 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|||
if this_peer_finished:
|
||||
break
|
||||
|
||||
if streamer is not None:
|
||||
streamer.end()
|
||||
|
||||
return input_ids
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue