Update define.
This commit is contained in:
parent
33b351ff8a
commit
618d57f23c
|
@ -31,6 +31,7 @@ class MeaningMap: # 16777216 1048576 8192
|
|||
self.ms_data = np.load(file_data)
|
||||
self.ms_start = np.load(file_start)
|
||||
self.ms_len = np.load(file_len)
|
||||
print("Load end")
|
||||
else:
|
||||
print("Disk cache miss, build new one.")
|
||||
|
||||
|
@ -123,6 +124,11 @@ class MeaningDataset(Dataset):
|
|||
self.data.append(sq)
|
||||
self.length.append(len(sq))
|
||||
|
||||
unique, counts = np.unique(self.length, return_counts=True)
|
||||
print("MeaningDataset size: " + str(len(self.length)))
|
||||
print("MeaningDataset max sequence length: " + str(max(unique)))
|
||||
print("MeaningDataset most popular sequence length: " + str(unique[np.argmax(counts)]))
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data)
|
||||
|
||||
|
@ -205,7 +211,8 @@ if __name__ == "__main__":
|
|||
md = MeaningDataset(4096, 8100, size=1024)
|
||||
train, val = md.Split(0.95)
|
||||
|
||||
dl = BatchGroupMeaningDataloader(train, 2)
|
||||
dl = BatchGroupMeaningDataloader(train, 32)
|
||||
length = len(dl)
|
||||
it = iter(dl)
|
||||
ne1 = next(it)
|
||||
ne2 = next(it)
|
||||
|
|
|
@ -18,15 +18,16 @@ learning_rate = 0.0001
|
|||
use_tril_attention_mask = None
|
||||
precision = "32-true" # "precision:bf16-mixed,16-mixed,32-true"
|
||||
train_batch_size = 32
|
||||
val_batch_size = 32
|
||||
val_batch_size = 4
|
||||
num_proc = 8
|
||||
max_epochs = 1000
|
||||
strategy = "auto"
|
||||
resume_from_ckpt_path = None
|
||||
seed = 42
|
||||
|
||||
vocab_size = 1024
|
||||
vocab_size = 2048
|
||||
level_ratio = 4
|
||||
level = 4
|
||||
|
||||
hidden_size = 256 # 128 1024 2048 32
|
||||
num_attention_heads = 8 # 8 8 16
|
||||
|
@ -57,9 +58,9 @@ if __name__ == "__main__":
|
|||
lit_module = LitModule(pretrain_model_name, learning_rate, config, use_tril_attention_mask)
|
||||
tokenizer = QWenTokenizer("./wit_b64.tiktoken", "./wit_char.tiktoken")
|
||||
|
||||
start = vocab_size * level_ratio * level_ratio * level_ratio * level_ratio
|
||||
start = vocab_size * (level_ratio**level)
|
||||
end = start * level_ratio
|
||||
size = start + start
|
||||
size = vocab_size * (level_ratio ** (level / 2))
|
||||
raw_dataset = MeaningDataset(start, end, size, vocab_size, level_ratio)
|
||||
train_dataset, val_dataset = raw_dataset.Split(0.95)
|
||||
train_dataloader = BatchGroupMeaningDataloader(train_dataset, train_batch_size)
|
||||
|
|
Loading…
Reference in New Issue