Add prompt_clue.

This commit is contained in:
Colin 2024-01-05 20:33:01 +08:00
parent 55fed4bc5a
commit 65578680cf
4 changed files with 2325 additions and 0 deletions

1620
prompt_clue/backbone.py Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,175 @@
# Copyright (c) Alibaba, Inc. and its affiliates.
# Copyright 2020, The T5 Authors and HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" T5 model configuration"""
from typing import Mapping
from transformers.configuration_utils import PretrainedConfig
from transformers.onnx import OnnxSeq2SeqConfigWithPast
from modelscope.utils.logger import get_logger
logger = get_logger()
class T5Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`T5Model`] or a [`TFT5Model`]. It is used to
instantiate a T5 model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the T5
[t5-small](https://huggingface.co/t5-small) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Arguments:
vocab_size (`int`, *optional*, defaults to 32128):
Vocabulary size of the T5 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`T5Model`] or [`TFT5Model`].
d_model (`int`, *optional*, defaults to 512):
Size of the encoder layers and the pooler layer.
d_kv (`int`, *optional*, defaults to 64):
Size of the key, query, value projections per attention head. `d_kv` has to be equal to `d_model //
num_heads`.
d_ff (`int`, *optional*, defaults to 2048):
Size of the intermediate feed forward layer in each `T5Block`.
num_layers (`int`, *optional*, defaults to 6):
Number of hidden layers in the Transformer encoder.
num_decoder_layers (`int`, *optional*):
Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set.
num_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer encoder.
relative_attention_num_buckets (`int`, *optional*, defaults to 32):
The number of buckets to use for each attention layer.
relative_attention_max_distance (`int`, *optional*, defaults to 128):
The maximum distance of the longer sequences for the bucket separation.
dropout_rate (`float`, *optional*, defaults to 0.1):
The ratio for all dropout layers.
layer_norm_eps (`float`, *optional*, defaults to 1e-6):
The epsilon used by the layer normalization layers.
initializer_factor (`float`, *optional*, defaults to 1):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
feed_forward_proj (`string`, *optional*, defaults to `"relu"`):
Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`. T5v1.1 uses the
`"gated-gelu"` feed forward projection. Original T5 uses `"relu"`.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
"""
model_type = 't5'
keys_to_ignore_at_inference = ['past_key_values']
attribute_map = {
'hidden_size': 'd_model',
'num_attention_heads': 'num_heads',
'num_hidden_layers': 'num_layers'
}
def __init__(self,
vocab_size=32128,
d_model=512,
d_kv=64,
d_ff=2048,
num_layers=6,
num_decoder_layers=None,
num_heads=8,
relative_attention_num_buckets=32,
relative_attention_max_distance=128,
dropout_rate=0.1,
layer_norm_epsilon=1e-6,
initializer_factor=1.0,
feed_forward_proj='relu',
is_encoder_decoder=True,
use_cache=True,
pad_token_id=0,
eos_token_id=1,
**kwargs):
self.vocab_size = vocab_size
self.d_model = d_model
self.d_kv = d_kv
self.d_ff = d_ff
self.num_layers = num_layers
self.num_decoder_layers = (num_decoder_layers if num_decoder_layers
is not None else self.num_layers
) # default = symmetry
self.num_heads = num_heads
self.relative_attention_num_buckets = relative_attention_num_buckets
self.relative_attention_max_distance = relative_attention_max_distance
self.dropout_rate = dropout_rate
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_factor = initializer_factor
self.feed_forward_proj = feed_forward_proj
self.use_cache = use_cache
act_info = self.feed_forward_proj.split('-')
self.dense_act_fn = act_info[-1]
self.is_gated_act = act_info[0] == 'gated'
if len(act_info) > 1 and act_info[0] != 'gated' or len(act_info) > 2:
raise ValueError(
f'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.'
'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '
"'gated-gelu' or 'relu'")
# for backwards compatibility
if feed_forward_proj == 'gated-gelu':
self.dense_act_fn = 'gelu_new'
super().__init__(
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
**kwargs,
)
class T5OnnxConfig(OnnxSeq2SeqConfigWithPast):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
common_inputs = {
'input_ids': {
0: 'batch',
1: 'encoder_sequence'
},
'attention_mask': {
0: 'batch',
1: 'encoder_sequence'
},
}
if self.use_past:
common_inputs['attention_mask'][
1] = 'past_encoder_sequence + sequence'
common_inputs['decoder_input_ids'] = {0: 'batch'}
common_inputs['decoder_attention_mask'] = {
0: 'batch',
1: 'past_decoder_sequence + sequence'
}
else:
common_inputs['decoder_input_ids'] = {
0: 'batch',
1: 'decoder_sequence'
}
common_inputs['decoder_attention_mask'] = {
0: 'batch',
1: 'decoder_sequence'
}
if self.use_past:
self.fill_with_past_key_values_(common_inputs, direction='inputs')
return common_inputs
@property
def default_onnx_opset(self) -> int:
return 13

59
prompt_clue/demo.py Normal file
View File

@ -0,0 +1,59 @@
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
# from modelscope.models.nlp import T5ForConditionalGeneration
from modelscope.preprocessors import TextGenerationTransformersPreprocessor
from modeling_t5 import T5ForConditionalGeneration
model = T5ForConditionalGeneration.from_pretrained(
"ClueAI/PromptCLUE-base-v1-5", revision="v0.1"
)
preprocessor = TextGenerationTransformersPreprocessor(model.model_dir)
pipeline_t2t = pipeline(
task=Tasks.text2text_generation, model=model, preprocessor=preprocessor
)
print(pipeline_t2t("生成与下列文字相同意思的句子:\n白云遍地无人扫\n答案:", do_sample=True, top_p=0.8))
# {'text': '白云散去无踪,没人扫。'}
# print(pipeline_t2t('改写下面的文字,确保意思相同:\n一个如此藐视本国人民民主权利的人怎么可能捍卫外国人的民权\n答案', do_sample=True, top_p=0.8))
# # {'text': '对一个如此藐视本国人民民主权利的人,怎么能捍卫外国人的民权?'}
# print(pipeline_t2t('根据问题给出答案:\n问题手指发麻的主要可能病因是\n答案'))
# # {'text': '神经损伤,颈椎病,贫血,高血压'}
# print(pipeline_t2t('问答:\n问题黄果悬钩子的目是\n答案'))
# # {'text': '蔷薇目'}
# print(pipeline_t2t('情感分析:\n这个看上去还可以但其实我不喜欢\n选项积极消极'))
# # {'text': '消极'}
# print(pipeline_t2t("下面句子是否表示了相同的语义:\n文本1糖尿病腿麻木怎么办\n文本2糖尿病怎样控制生活方式\n选项相似不相似\n答案"))
# # {'text': '不相似'}
# print(pipeline_t2t('这是关于哪方面的新闻:\n如果日本沉没中国会接收日本难民吗\n选项故事,文化,娱乐,体育,财经,房产,汽车,教育,科技,军事,旅游,国际,股票,农业,游戏'))
# # {'text': '国际'}
# print(pipeline_t2t("阅读文本抽取关键信息:\n张玄武1990年出生中国国籍无境外居留权博士学历现任杭州线锁科技技术总监。\n问题机构人名职位籍贯专业国籍学历种族\n答案"))
# # {'text': '机构杭州线锁科技技术_人名张玄武_职位博士学历'}
# print(pipeline_t2t("翻译成英文:\n杀不死我的只会让我更强大\n答案"))
# # {'text': 'To kill my life only let me stronger'}
# print(pipeline_t2t('为下面的文章生成摘要:\n北京时间9月5日12时52分四川甘孜藏族自治州泸定县发生6.8级地震。地震发生后,领导高度重视并作出重要指示,要求把抢救生命作为首要任务,全力救援受灾群众,最大限度减少人员伤亡'))
# # {'text': '四川甘孜发生6.8级地震'}
# print(pipeline_t2t("推理关系判断:\n前提小明今天在北京\n假设小明在深圳旅游\n选项矛盾蕴含中立\n答案"))
# # {'text': '蕴涵'}
# print(pipeline_t2t('阅读以下对话并回答问题。\n男今天怎么这么晚才来上班啊昨天工作到很晚而且我还感冒了。男那你回去休息吧我帮你请假。女谢谢你。\n问题女的怎么样\n选项正在工作感冒了在打电话要出差。'))
# # {'text': '感冒了'}
# print(pipeline_t2t("文本纠错:\n告诉二营长叫他彻回来我李云龙从不打没有准备的杖\n答案"))
# #{'text''告诉二营长,叫他下来,我李云龙从不打没有准备的仗'}
# print(pipeline_t2t("问答:\n问题小米的创始人是谁\n答案"))
# # {'text': '小米创始人:雷军'}

471
prompt_clue/modeling_t5.py Normal file
View File

@ -0,0 +1,471 @@
# Copyright (c) Alibaba, Inc. and its affiliates.
# Copyright 2018 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import warnings
from typing import Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
from modelscope.metainfo import Models
from modelscope.models.builder import MODELS
from modelscope.outputs import (
AttentionBackboneModelOutput,
Seq2SeqLMOutput,
TokenGeneratorOutput,
)
from modelscope.utils.constant import Tasks
from modelscope.utils.logger import get_logger
from backbone import T5PreTrainedModel, T5Stack
from configuration import T5Config
logger = get_logger()
# Warning message for FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
__HEAD_MASK_WARNING_MSG = """
The input argument `head_mask` was split into two arguments `head_mask` and
`decoder_head_mask`. Currently, `decoder_head_mask` is set to copy `head_mask`,
but this feature is deprecated and will be removed in future versions. If you do
not want to use any `decoder_head_mask` now, please set `decoder_head_mask =
torch.ones(num_layers, num_heads)`.
"""
class T5ForConditionalGeneration(T5PreTrainedModel):
_keys_to_ignore_on_load_missing = [
r"encoder\.embed_tokens\.weight",
r"decoder\.embed_tokens\.weight",
r"lm_head\.weight",
]
_keys_to_ignore_on_load_unexpected = [
r"decoder\.block\.0\.layer\.1\.EncDecAttention\.relative_attention_bias\.weight",
]
def __init__(self, config: T5Config, device_map=None, **kwargs):
super().__init__(config)
self.model_dim = config.d_model
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.is_decoder = False
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = T5Stack(encoder_config, self.shared)
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.is_encoder_decoder = False
decoder_config.num_layers = config.num_decoder_layers
self.decoder = T5Stack(decoder_config, self.shared)
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
# Model parallel
self.model_parallel = False
if device_map == "auto":
self.parallelize()
def parallelize(self, device_map=None):
self.device_map = (
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
if device_map is None
else device_map
)
assert_device_map(self.device_map, len(self.encoder.block))
self.encoder.parallelize(self.device_map)
self.decoder.parallelize(self.device_map)
self.lm_head = self.lm_head.to(self.decoder.first_device)
self.model_parallel = True
def deparallelize(self):
self.encoder.deparallelize()
self.decoder.deparallelize()
self.encoder = self.encoder.to("cpu")
self.decoder = self.decoder.to("cpu")
self.lm_head = self.lm_head.to("cpu")
self.model_parallel = False
self.device_map = None
torch.cuda.empty_cache()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
self.decoder.set_input_embeddings(new_embeddings)
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def get_output_embeddings(self):
return self.lm_head
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
decoder_head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. T5 is a model
with relative position embeddings so you should be able to pad the
inputs on both the right and the left.
Indices can be obtained using [`T5Tokenizer`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`]
for detail.
[What are input IDs?](../glossary#input-ids)
To know more on how to prepare `input_ids` for pretraining take a
look a [T5 Training](./t5#training).
attention_mask (`torch.FloatTensor` of shape `(batch_size,sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask
values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`T5Tokenizer`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`]
for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
T5 uses the `pad_token_id` as the starting token for
`decoder_input_ids` generation. If `past_key_values` is used,
optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
To know more on how to prepare `decoder_input_ids` for pretraining
take a look at [T5 Training](./t5#training).
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in
`decoder_input_ids`. Causal mask will also be used by default.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the
encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or
`(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the
decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in
the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*,
`optional`: *attentions*) `last_hidden_state` of shape `(batch_size,
sequence_length, hidden_size)` is a sequence of hidden states at the
output of the last layer of the encoder. Used in the cross-attention
of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length
`config.n_layers` with each tuple having 4 tensors of shape
`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention
blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only
the last `decoder_input_ids` (those that don't have their past key
value states given to this model) of shape `(batch_size, 1)` instead
of all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to
directly pass an embedded representation. This is useful if you want
more control over how to convert `input_ids` indices into associated
vectors than the model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`,
*optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to
directly pass an embedded representation. If `past_key_values` is
used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more
control over how to convert `decoder_input_ids` indices into
associated vectors than the model's internal embedding lookup
matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset,
`decoder_inputs_embeds` takes the value of `inputs_embeds`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned
and can be used to speed up decoding (see `past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention
layers. See `attentions` under returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See
`hidden_states` under returned tensors for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain
tuple.
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss.
Indices should be in `[-100, 0, ..., config.vocab_size - 1]`. All
labels set to `-100` are ignored (masked), the loss is only computed
for labels in `[0, ..., config.vocab_size]`
Returns:
Examples:
>>> from transformers import T5Tokenizer, T5ForConditionalGeneration
>>> tokenizer = T5Tokenizer.from_pretrained("t5-small")
>>> model = T5ForConditionalGeneration.from_pretrained("t5-small")
>>> # training
>>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids
>>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids
>>> outputs = model(input_ids=input_ids, labels=labels)
>>> loss = outputs.loss
>>> logits = outputs.logits
>>> # inference
>>> input_ids = tokenizer(
... "summarize: studies have shown that owning a dog is good for you", return_tensors="pt"
>>> ).input_ids # Batch size 1
>>> outputs = model.generate(input_ids)
>>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
>>> # studies have shown that owning a dog is good for you.
"""
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
if head_mask is not None and decoder_head_mask is None:
if self.config.num_layers == self.config.num_decoder_layers:
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
decoder_head_mask = head_mask
# Encode if needed (training, first prediction pass)
if encoder_outputs is None:
# Convert encoder inputs in embeddings if needed
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
elif return_dict and not isinstance(
encoder_outputs, AttentionBackboneModelOutput
):
encoder_outputs = AttentionBackboneModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
hidden_states = encoder_outputs[0]
if self.model_parallel:
torch.cuda.set_device(self.decoder.first_device)
if (
labels is not None
and decoder_input_ids is None
and decoder_inputs_embeds is None
):
# get decoder inputs from shifting lm labels to the right
decoder_input_ids = self._shift_right(labels)
# Set device for model parallelism
if self.model_parallel:
torch.cuda.set_device(self.decoder.first_device)
hidden_states = hidden_states.to(self.decoder.first_device)
if decoder_input_ids is not None:
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device)
if attention_mask is not None:
attention_mask = attention_mask.to(self.decoder.first_device)
if decoder_attention_mask is not None:
decoder_attention_mask = decoder_attention_mask.to(
self.decoder.first_device
)
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
past_key_values=past_key_values,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = decoder_outputs[0]
# Set device for model parallelism
if self.model_parallel:
torch.cuda.set_device(self.encoder.first_device)
self.lm_head = self.lm_head.to(self.encoder.first_device)
sequence_output = sequence_output.to(self.lm_head.weight.device)
if self.config.tie_word_embeddings:
# Rescale output before projecting on vocab See
# https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
sequence_output = sequence_output * (self.model_dim ** -0.5)
lm_logits = self.lm_head(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss(ignore_index=-100)
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
# TODO(thom): Add z_loss
# https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666
if not return_dict:
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
return ((loss,) + output) if loss is not None else output
return Seq2SeqLMOutput(
loss=loss,
logits=lm_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past=None,
attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs,
):
# cut decoder_input_ids if past is used
if past is not None:
input_ids = input_ids[:, -1:]
return {
"decoder_input_ids": input_ids,
"past_key_values": past,
"encoder_outputs": encoder_outputs,
"attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache,
}
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return self._shift_right(labels)
def generate(
self,
*args,
**kwargs,
):
output = super().generate(*args, **kwargs)
return TokenGeneratorOutput(
sequences=output if isinstance(output, torch.Tensor) else output[0]
)
def _reorder_cache(self, past, beam_idx):
# if decoder past is not included in output
# speedy decoding is disabled and no need to reorder
if past is None:
logger.warning(
"You might want to consider setting `use_cache=True` to speed up decoding"
)
return past
reordered_decoder_past = ()
for layer_past_states in past:
# get the correct batch idx from layer past batch dim
# batch dim of `past` is at 2nd position
reordered_layer_past_states = ()
for layer_past_state in layer_past_states:
# need to set correct `past` for each of the four key / value states
reordered_layer_past_states = reordered_layer_past_states + (
layer_past_state.index_select(
0, beam_idx.to(layer_past_state.device)
),
)
assert reordered_layer_past_states[0].shape == layer_past_states[0].shape
assert len(reordered_layer_past_states) == len(layer_past_states)
reordered_decoder_past = reordered_decoder_past + (
reordered_layer_past_states,
)
return reordered_decoder_past