Refine the base code.

This commit is contained in:
Colin 2024-03-29 22:10:25 +08:00
parent 618d57f23c
commit 7a8815cceb
3 changed files with 21 additions and 23 deletions

View File

@ -93,5 +93,6 @@ class LitModule(pl.LightningModule):
stopping_threshold=1, stopping_threshold=1,
) )
lr_monitor = pl.callbacks.LearningRateMonitor(logging_interval="step") lr_monitor = pl.callbacks.LearningRateMonitor(logging_interval="step")
return [checkpoint_callback, lr_monitor] return [lr_monitor]
# return [checkpoint_callback, lr_monitor]
# return [checkpoint_callback, early_stop_callback] # return [checkpoint_callback, early_stop_callback]

View File

@ -125,9 +125,12 @@ class MeaningDataset(Dataset):
self.length.append(len(sq)) self.length.append(len(sq))
unique, counts = np.unique(self.length, return_counts=True) unique, counts = np.unique(self.length, return_counts=True)
print("----------------------------------------------------------------")
print("MeaningDataset start:" + str(start) + " end:" + str(end) + " space:" + str(end - start))
print("MeaningDataset size:" + str(len(self.length))) print("MeaningDataset size:" + str(len(self.length)))
print("MeaningDataset max sequence length:" + str(max(unique))) print("MeaningDataset max sequence length:" + str(max(unique)))
print("MeaningDataset most popular sequence length:" + str(unique[np.argmax(counts)])) print("MeaningDataset most popular sequence length:" + str(unique[np.argmax(counts)]))
print("----------------------------------------------------------------")
def __len__(self): def __len__(self):
return len(self.data) return len(self.data)
@ -197,6 +200,8 @@ class BatchGroupMeaningDataloader(Dataset):
np.random.shuffle(index_shuffle) np.random.shuffle(index_shuffle)
index = index[index_shuffle] index = index[index_shuffle]
self.indexBatch = index self.indexBatch = index
print("Dataloader batch size:" + str(batch_size) + " count:" + str(len(index)))
print("Dataloader total:" + str(len(length)) + " drop:" + str(len(length) - len(index) * batch_size))
def __len__(self): def __len__(self):
return len(self.indexBatch) return len(self.indexBatch)

View File

@ -17,34 +17,26 @@ pretrain_model_name = None # "qwen/Qwen-1_8B-Chat"
learning_rate = 0.0001 learning_rate = 0.0001
use_tril_attention_mask = None use_tril_attention_mask = None
precision = "32-true" # "precision:bf16-mixed,16-mixed,32-true" precision = "32-true" # "precision:bf16-mixed,16-mixed,32-true"
train_batch_size = 32 train_batch_size = 4
val_batch_size = 4 val_batch_size = 1
num_proc = 8 num_proc = 8
max_epochs = 1000 max_epochs = 1000
strategy = "auto" strategy = "auto"
resume_from_ckpt_path = None resume_from_ckpt_path = None
seed = 42 seed = 42
vocab_size = 2048 vocab_size = 1024
level_ratio = 4 level_ratio = 4
level = 4 level = 4
dataset_level = 1
hidden_size = 256 # 128 1024 2048 32 hidden_size = 256 # 128 1024 2048 32
num_attention_heads = 8 # 8 8 16 num_attention_heads = 8 # 8 8 16
num_hidden_layers = 1 # 6 12 24 3 num_hidden_layers = 2 # 6 12 24 3
name = "vocab_level_hidden_head_layer" name = "vocab_ratio_level_data_hidden_head_layer"
version = ( ver = f"{vocab_size}" + "_" + f"{level_ratio}" + "_" + f"{level}" + "_" + f"{dataset_level}"
str(vocab_size) ver = ver + "_" + f"{hidden_size}" + "_" + f"{num_attention_heads}" + "_" + f"{num_hidden_layers}"
+ "_"
+ str(level_ratio)
+ "_"
+ str(hidden_size)
+ "_"
+ str(num_attention_heads)
+ "_"
+ str(num_hidden_layers)
)
if __name__ == "__main__": if __name__ == "__main__":
torch.manual_seed(seed) torch.manual_seed(seed)
@ -60,9 +52,9 @@ if __name__ == "__main__":
start = vocab_size * (level_ratio**level) start = vocab_size * (level_ratio**level)
end = start * level_ratio end = start * level_ratio
size = vocab_size * (level_ratio ** (level / 2)) size = int(vocab_size * (level_ratio**dataset_level))
raw_dataset = MeaningDataset(start, end, size, vocab_size, level_ratio) raw_dataset = MeaningDataset(start, end, size, vocab_size, level_ratio)
train_dataset, val_dataset = raw_dataset.Split(0.95) train_dataset, val_dataset = raw_dataset.Split(0.9)
train_dataloader = BatchGroupMeaningDataloader(train_dataset, train_batch_size) train_dataloader = BatchGroupMeaningDataloader(train_dataset, train_batch_size)
val_dataloader = BatchGroupMeaningDataloader(val_dataset, val_batch_size) val_dataloader = BatchGroupMeaningDataloader(val_dataset, val_batch_size)
# it = iter(train_dataloader) # it = iter(train_dataloader)
@ -75,7 +67,7 @@ if __name__ == "__main__":
accelerator="cuda", accelerator="cuda",
devices=[0, 1], devices=[0, 1],
precision=precision, precision=precision,
logger=TBLogger("./log/", name=name, version=version, default_hp_metric=False), logger=TBLogger("./log/", name=name, version=ver, default_hp_metric=False),
strategy=strategy, strategy=strategy,
max_epochs=max_epochs, max_epochs=max_epochs,
) )