Refine model of qwen.
This commit is contained in:
		
							parent
							
								
									40ae899515
								
							
						
					
					
						commit
						7c047f0b32
					
				
							
								
								
									
										44
									
								
								qwen/demo.py
								
								
								
								
							
							
						
						
									
										44
									
								
								qwen/demo.py
								
								
								
								
							| 
						 | 
					@ -24,33 +24,6 @@ model = QWenLMHeadModel(config)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
print(model)
 | 
					print(model)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# QWenLMHeadModel(
 | 
					 | 
				
			||||||
#   (transformer): QWenModel(
 | 
					 | 
				
			||||||
#     (wte): Embedding(151936, 2048)
 | 
					 | 
				
			||||||
#     (drop): Dropout(p=0.0, inplace=False)
 | 
					 | 
				
			||||||
#     (rotary_emb): RotaryEmbedding()
 | 
					 | 
				
			||||||
#     (h): ModuleList(
 | 
					 | 
				
			||||||
#       (0-23): 24 x QWenBlock(
 | 
					 | 
				
			||||||
#         (ln_1): RMSNorm()
 | 
					 | 
				
			||||||
#         (attn): QWenAttention(
 | 
					 | 
				
			||||||
#           (c_attn): Linear(in_features=2048, out_features=6144, bias=True)
 | 
					 | 
				
			||||||
#           (c_proj): Linear(in_features=2048, out_features=2048, bias=False)
 | 
					 | 
				
			||||||
#           (attn_dropout): Dropout(p=0.0, inplace=False)
 | 
					 | 
				
			||||||
#         )
 | 
					 | 
				
			||||||
#         (ln_2): RMSNorm()
 | 
					 | 
				
			||||||
#         (mlp): QWenMLP(
 | 
					 | 
				
			||||||
#           (w1): Linear(in_features=2048, out_features=5504, bias=False)
 | 
					 | 
				
			||||||
#           (w2): Linear(in_features=2048, out_features=5504, bias=False)
 | 
					 | 
				
			||||||
#           (c_proj): Linear(in_features=5504, out_features=2048, bias=False)
 | 
					 | 
				
			||||||
#         )
 | 
					 | 
				
			||||||
#       )
 | 
					 | 
				
			||||||
#     )
 | 
					 | 
				
			||||||
#     (ln_f): RMSNorm()
 | 
					 | 
				
			||||||
#   )
 | 
					 | 
				
			||||||
#   (lm_head): Linear(in_features=2048, out_features=151936, bias=False)
 | 
					 | 
				
			||||||
# )
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
 | 
					tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
 | 
				
			||||||
model = model.from_pretrained(model_dir).cuda()
 | 
					model = model.from_pretrained(model_dir).cuda()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -72,22 +45,9 @@ print(decode_tokens)
 | 
				
			||||||
# <|im_start|>assistant
 | 
					# <|im_start|>assistant
 | 
				
			||||||
# 日本的首都东京。<|im_end|><|endoftext|>
 | 
					# 日本的首都东京。<|im_end|><|endoftext|>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 | 
				
			||||||
# # 第一轮对话
 | 
					 | 
				
			||||||
# response, history, decode_tokens = model.chat(tokenizer, "你好", "", history=None)
 | 
					 | 
				
			||||||
# print(decode_tokens)
 | 
					 | 
				
			||||||
# # 你好!很高兴为你提供帮助。
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
# 第二轮对话
 | 
					# 第二轮对话
 | 
				
			||||||
response, history, decode_tokens = model.chat(tokenizer, "给我讲一个年轻人奋斗创业最终取得成功的故事。", "", history=None)
 | 
					response, history, decode_tokens = model.chat(tokenizer, "给我讲一个年轻人奋斗创业最终取得成功的故事。", "", history=None)
 | 
				
			||||||
print(decode_tokens)
 | 
					print(decode_tokens)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if decode_tokens.split("\n")[-2] != """这个故事告诉我们,只要我们有决心和毅力,就一定能够克服困难,实现我们的梦想。<|im_end|>""":
 | 
				
			||||||
# <|im_start|>system
 | 
					    raise ()
 | 
				
			||||||
# You are a helpful assistant.<|im_end|>
 | 
					 | 
				
			||||||
# <|im_start|>user
 | 
					 | 
				
			||||||
# 你好<|im_end|>
 | 
					 | 
				
			||||||
# <|im_start|>assistant
 | 
					 | 
				
			||||||
# 莎士比亚是头一个使用“你好”这个词的文学家,他在《哈姆雷特》中写道:“你是谁?你在哪儿?
 | 
					 | 
				
			||||||
# ”他的这一段话,通常被认为是最早的使用“你好”这个词的文学记载。这句话在英国语中非常常见,
 | 
					 | 
				
			||||||
# 特别是在正式或礼貌的情况下。<|im_end|><|endoftext|>
 | 
					 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -1,47 +1,29 @@
 | 
				
			||||||
import copy
 | 
					import copy
 | 
				
			||||||
import math
 | 
					import math
 | 
				
			||||||
import inspect
 | 
					 | 
				
			||||||
import os
 | 
					import os
 | 
				
			||||||
 | 
					import sys
 | 
				
			||||||
import gc
 | 
					import gc
 | 
				
			||||||
from tqdm import auto as tqdm_lib
 | 
					from tqdm import auto as tqdm_lib
 | 
				
			||||||
import json
 | 
					import json
 | 
				
			||||||
from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List, Any, Generator
 | 
					from typing import Optional, Tuple, Union, Callable, List, Any, Generator
 | 
				
			||||||
 | 
					from einops import rearrange
 | 
				
			||||||
 | 
					
 | 
				
			||||||
import torch
 | 
					import torch
 | 
				
			||||||
import torch.nn.functional as F
 | 
					import torch.nn.functional as F
 | 
				
			||||||
import torch.utils.checkpoint
 | 
					import torch.utils.checkpoint
 | 
				
			||||||
 | 
					 | 
				
			||||||
from torch.nn import CrossEntropyLoss
 | 
					from torch.nn import CrossEntropyLoss
 | 
				
			||||||
from transformers import PreTrainedTokenizer, GenerationConfig, StoppingCriteriaList
 | 
					 | 
				
			||||||
from transformers.generation.logits_process import LogitsProcessorList
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
if TYPE_CHECKING:
 | 
					 | 
				
			||||||
    from transformers.generation.streamers import BaseStreamer
 | 
					 | 
				
			||||||
from transformers.generation.utils import GenerateOutput
 | 
					 | 
				
			||||||
from transformers.modeling_outputs import (
 | 
					 | 
				
			||||||
    BaseModelOutputWithPast,
 | 
					 | 
				
			||||||
    CausalLMOutputWithPast,
 | 
					 | 
				
			||||||
)
 | 
					 | 
				
			||||||
from transformers.modeling_utils import PreTrainedModel
 | 
					 | 
				
			||||||
from transformers.utils import logging
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
from torch import nn
 | 
					from torch import nn
 | 
				
			||||||
from einops import rearrange
 | 
					from safetensors.torch import load_file as safe_load_file
 | 
				
			||||||
 | 
					from safetensors.torch import save_file as safe_save_file
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from transformers.generation.utils import GenerateOutput
 | 
				
			||||||
from configuration_qwen import QWenConfig
 | 
					from configuration_qwen import QWenConfig
 | 
				
			||||||
from qwen_generation_utils import (
 | 
					from qwen_generation_utils import (
 | 
				
			||||||
    HistoryType,
 | 
					    HistoryType,
 | 
				
			||||||
    make_context,
 | 
					    make_context,
 | 
				
			||||||
    decode_tokens,
 | 
					    decode_tokens,
 | 
				
			||||||
    StopWordsLogitsProcessor,
 | 
					 | 
				
			||||||
)
 | 
					)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
from safetensors import safe_open
 | 
					 | 
				
			||||||
from safetensors.torch import load_file as safe_load_file
 | 
					 | 
				
			||||||
from safetensors.torch import save_file as safe_save_file
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
import sys
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
sys.path.append("..")
 | 
					sys.path.append("..")
 | 
				
			||||||
from tools import show
 | 
					from tools import show
 | 
				
			||||||
from tools import mem_tracker
 | 
					from tools import mem_tracker
 | 
				
			||||||
| 
						 | 
					@ -50,39 +32,30 @@ from tools import mem_tracker
 | 
				
			||||||
# tracker.track()
 | 
					# tracker.track()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class RMSNorm(torch.nn.Module):
 | 
				
			||||||
 | 
					    def __init__(self, dim: int, eps: float = 1e-6):
 | 
				
			||||||
 | 
					        super().__init__()
 | 
				
			||||||
 | 
					        self.eps = eps
 | 
				
			||||||
 | 
					        self.weight = nn.Parameter(torch.ones(dim))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def _norm(self, x):
 | 
				
			||||||
 | 
					        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def forward(self, x):
 | 
				
			||||||
 | 
					        return self._norm(x.float()).type_as(x) * self.weight
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class QWenAttention(nn.Module):
 | 
					class QWenAttention(nn.Module):
 | 
				
			||||||
    def __init__(self, config, index):
 | 
					    def __init__(self, config, index):
 | 
				
			||||||
        super().__init__()
 | 
					        super().__init__()
 | 
				
			||||||
 | 
					 | 
				
			||||||
        self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
 | 
					 | 
				
			||||||
        self.seq_length = config.seq_length
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        self.hidden_size = config.hidden_size
 | 
					        self.hidden_size = config.hidden_size
 | 
				
			||||||
        self.split_size = config.hidden_size
 | 
					        self.split_size = config.hidden_size
 | 
				
			||||||
        self.num_heads = config.num_attention_heads
 | 
					        self.num_heads = config.num_attention_heads
 | 
				
			||||||
        self.head_dim = self.hidden_size // self.num_heads
 | 
					        self.head_dim = self.hidden_size // self.num_heads
 | 
				
			||||||
 | 
					 | 
				
			||||||
        self.scale_attn_weights = True
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        self.projection_size = config.kv_channels * config.num_attention_heads
 | 
					        self.projection_size = config.kv_channels * config.num_attention_heads
 | 
				
			||||||
 | 
					 | 
				
			||||||
        assert self.projection_size % config.num_attention_heads == 0
 | 
					 | 
				
			||||||
        self.hidden_size_per_attention_head = self.projection_size // config.num_attention_heads
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        self.c_attn = nn.Linear(config.hidden_size, 3 * self.projection_size)
 | 
					        self.c_attn = nn.Linear(config.hidden_size, 3 * self.projection_size)
 | 
				
			||||||
        self.c_proj = nn.Linear(config.hidden_size, self.projection_size, bias=not config.no_bias)
 | 
					        self.c_proj = nn.Linear(config.hidden_size, self.projection_size, bias=not config.no_bias)
 | 
				
			||||||
 | 
					 | 
				
			||||||
        self.use_dynamic_ntk = config.use_dynamic_ntk
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        logn_list = [math.log(i, self.seq_length) if i > self.seq_length else 1 for i in range(1, 32768)]
 | 
					 | 
				
			||||||
        logn_tensor = torch.tensor(logn_list)[None, :, None, None]
 | 
					 | 
				
			||||||
        self.register_buffer("logn_tensor", logn_tensor, persistent=False)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        self.attn_dropout = nn.Dropout(config.attn_dropout_prob)
 | 
					        self.attn_dropout = nn.Dropout(config.attn_dropout_prob)
 | 
				
			||||||
        self.softmax_in_fp32 = config.softmax_in_fp32 if hasattr(config, "softmax_in_fp32") else False
 | 
					 | 
				
			||||||
        cache_dtype = torch.float
 | 
					 | 
				
			||||||
        self.cache_qmax = torch.tensor(torch.iinfo(torch.uint8).max, dtype=cache_dtype)
 | 
					 | 
				
			||||||
        self.cache_qmin = torch.tensor(torch.iinfo(torch.uint8).min, dtype=cache_dtype)
 | 
					 | 
				
			||||||
        self.index = index
 | 
					        self.index = index
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def _split_heads(self, tensor, num_heads, attn_head_size):
 | 
					    def _split_heads(self, tensor, num_heads, attn_head_size):
 | 
				
			||||||
| 
						 | 
					@ -95,53 +68,6 @@ class QWenAttention(nn.Module):
 | 
				
			||||||
        new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
 | 
					        new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
 | 
				
			||||||
        return tensor.view(new_shape)
 | 
					        return tensor.view(new_shape)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def forward(
 | 
					 | 
				
			||||||
        self,
 | 
					 | 
				
			||||||
        hidden_states: Optional[Tuple[torch.FloatTensor]],
 | 
					 | 
				
			||||||
        rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
 | 
					 | 
				
			||||||
    ):
 | 
					 | 
				
			||||||
        mixed_x_layer = self.c_attn(hidden_states)
 | 
					 | 
				
			||||||
        query, key, value = mixed_x_layer.split(self.split_size, dim=2)
 | 
					 | 
				
			||||||
        query = self._split_heads(query, self.num_heads, self.head_dim)
 | 
					 | 
				
			||||||
        key = self._split_heads(key, self.num_heads, self.head_dim)
 | 
					 | 
				
			||||||
        value = self._split_heads(value, self.num_heads, self.head_dim)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        rotary_pos_emb = rotary_pos_emb_list[0]
 | 
					 | 
				
			||||||
        rotary_pos_emb = [i[:, -query.shape[1] :, :, :] for i in rotary_pos_emb]
 | 
					 | 
				
			||||||
        rotary_pos_emb = (rotary_pos_emb,) * 2
 | 
					 | 
				
			||||||
        q_pos_emb, k_pos_emb = rotary_pos_emb
 | 
					 | 
				
			||||||
        # Slice the pos emb for current inference
 | 
					 | 
				
			||||||
        query = apply_rotary_pos_emb(query, q_pos_emb)
 | 
					 | 
				
			||||||
        key = apply_rotary_pos_emb(key, k_pos_emb)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        key_size = key.size(1)
 | 
					 | 
				
			||||||
        if key_size > self.seq_length and not self.training:
 | 
					 | 
				
			||||||
            seq_start = key.size(1) - query.size(1)
 | 
					 | 
				
			||||||
            seq_end = key.size(1)
 | 
					 | 
				
			||||||
            logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :].type_as(query)
 | 
					 | 
				
			||||||
            query = query * logn_tensor.expand_as(query)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        key_size = key.size(1)
 | 
					 | 
				
			||||||
        causal_mask = torch.tril(torch.ones((key_size, key_size), dtype=torch.bool, device=query.device)).view(
 | 
					 | 
				
			||||||
            1, 1, key_size, key_size
 | 
					 | 
				
			||||||
        )
 | 
					 | 
				
			||||||
        query = query.permute(0, 2, 1, 3)
 | 
					 | 
				
			||||||
        key = key.permute(0, 2, 1, 3)
 | 
					 | 
				
			||||||
        value = value.permute(0, 2, 1, 3)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # qk = query @ key.transpose(-2, -1)
 | 
					 | 
				
			||||||
        # qk = qk[0]
 | 
					 | 
				
			||||||
        # prePath = "../generated/query_matmul_key/img/"
 | 
					 | 
				
			||||||
        # show.DumpTensorToImage(
 | 
					 | 
				
			||||||
        #     qk, prePath + "q_matmul_k_sequence_" + str(key_size) + "_layer_" + str(self.index) + ".png"
 | 
					 | 
				
			||||||
        # )
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        attn_output = F.scaled_dot_product_attention(query, key, value, attn_mask=causal_mask).transpose(1, 2)
 | 
					 | 
				
			||||||
        context_layer = self._merge_heads(attn_output, self.num_heads, self.head_dim)
 | 
					 | 
				
			||||||
        attn_output = self.c_proj(context_layer)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        return attn_output
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
class QWenMLP(nn.Module):
 | 
					class QWenMLP(nn.Module):
 | 
				
			||||||
    def __init__(self, config):
 | 
					    def __init__(self, config):
 | 
				
			||||||
| 
						 | 
					@ -151,110 +77,60 @@ class QWenMLP(nn.Module):
 | 
				
			||||||
        self.w2 = nn.Linear(config.hidden_size, ff_dim_in, bias=not config.no_bias)
 | 
					        self.w2 = nn.Linear(config.hidden_size, ff_dim_in, bias=not config.no_bias)
 | 
				
			||||||
        self.c_proj = nn.Linear(ff_dim_in, config.hidden_size, bias=not config.no_bias)
 | 
					        self.c_proj = nn.Linear(ff_dim_in, config.hidden_size, bias=not config.no_bias)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def forward(self, hidden_states):
 | 
					 | 
				
			||||||
        a1 = self.w1(hidden_states)
 | 
					 | 
				
			||||||
        a2 = self.w2(hidden_states)
 | 
					 | 
				
			||||||
        intermediate_parallel = a1 * F.silu(a2)
 | 
					 | 
				
			||||||
        output = self.c_proj(intermediate_parallel)
 | 
					 | 
				
			||||||
        return output
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
class QWenBlock(nn.Module):
 | 
					class QWenBlock(nn.Module):
 | 
				
			||||||
    def __init__(self, config, index):
 | 
					    def __init__(self, config, index):
 | 
				
			||||||
        super().__init__()
 | 
					        super().__init__()
 | 
				
			||||||
        hidden_size = config.hidden_size
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        self.ln_1 = RMSNorm(
 | 
					        self.ln_1 = RMSNorm(
 | 
				
			||||||
            hidden_size,
 | 
					            config.hidden_size,
 | 
				
			||||||
            eps=config.layer_norm_epsilon,
 | 
					            eps=config.layer_norm_epsilon,
 | 
				
			||||||
        )
 | 
					        )
 | 
				
			||||||
        self.attn = QWenAttention(config, index)
 | 
					        self.attn = QWenAttention(config, index)
 | 
				
			||||||
        self.ln_2 = RMSNorm(
 | 
					        self.ln_2 = RMSNorm(
 | 
				
			||||||
            hidden_size,
 | 
					            config.hidden_size,
 | 
				
			||||||
            eps=config.layer_norm_epsilon,
 | 
					            eps=config.layer_norm_epsilon,
 | 
				
			||||||
        )
 | 
					        )
 | 
				
			||||||
        self.mlp = QWenMLP(config)
 | 
					        self.mlp = QWenMLP(config)
 | 
				
			||||||
        self.index = index
 | 
					        self.index = index
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def forward(
 | 
					 | 
				
			||||||
        self,
 | 
					 | 
				
			||||||
        hidden_states: Optional[Tuple[torch.FloatTensor]],
 | 
					 | 
				
			||||||
        rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
 | 
					 | 
				
			||||||
    ):
 | 
					 | 
				
			||||||
        layernorm_output = self.ln_1(hidden_states)
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
        attn_outputs = self.attn(layernorm_output, rotary_pos_emb_list)
 | 
					class QWenModel(nn.Module):
 | 
				
			||||||
        attn_output = attn_outputs[0]
 | 
					 | 
				
			||||||
        residual = hidden_states
 | 
					 | 
				
			||||||
        layernorm_input = attn_output + residual
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        layernorm_output = self.ln_2(layernorm_input)
 | 
					 | 
				
			||||||
        residual = layernorm_input
 | 
					 | 
				
			||||||
        mlp_output = self.mlp(layernorm_output)
 | 
					 | 
				
			||||||
        hidden_states = residual + mlp_output
 | 
					 | 
				
			||||||
        return hidden_states
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
class QWenPreTrainedModel(nn.Module):
 | 
					 | 
				
			||||||
    config_class = QWenConfig
 | 
					 | 
				
			||||||
    base_model_prefix = "transformer"
 | 
					 | 
				
			||||||
    is_parallelizable = False
 | 
					 | 
				
			||||||
    supports_gradient_checkpointing = True
 | 
					 | 
				
			||||||
    _no_split_modules = ["QWenBlock"]
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    def __init__(self, *inputs, **kwargs):
 | 
					 | 
				
			||||||
        super().__init__()
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
class QWenModel(QWenPreTrainedModel):
 | 
					 | 
				
			||||||
    def __init__(self, config):
 | 
					    def __init__(self, config):
 | 
				
			||||||
        super().__init__(config)
 | 
					        super().__init__()
 | 
				
			||||||
        self.vocab_size = config.vocab_size
 | 
					        self.wte = nn.Embedding(config.vocab_size, config.hidden_size)
 | 
				
			||||||
        self.num_hidden_layers = config.num_hidden_layers
 | 
					 | 
				
			||||||
        self.embed_dim = config.hidden_size
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        self.use_dynamic_ntk = config.use_dynamic_ntk
 | 
					 | 
				
			||||||
        self.seq_length = config.seq_length
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        self.wte = nn.Embedding(self.vocab_size, self.embed_dim)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        self.drop = nn.Dropout(config.emb_dropout_prob)
 | 
					        self.drop = nn.Dropout(config.emb_dropout_prob)
 | 
				
			||||||
 | 
					        dim = config.kv_channels
 | 
				
			||||||
        if config.rotary_pct == 1.0:
 | 
					 | 
				
			||||||
            self.rotary_ndims = None
 | 
					 | 
				
			||||||
        else:
 | 
					 | 
				
			||||||
            assert config.rotary_pct < 1
 | 
					 | 
				
			||||||
            self.rotary_ndims = int(config.kv_channels * config.rotary_pct)
 | 
					 | 
				
			||||||
        dim = self.rotary_ndims if self.rotary_ndims is not None else config.kv_channels
 | 
					 | 
				
			||||||
        self.rotary_emb = RotaryEmbedding(dim, base=config.rotary_emb_base)
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
        self.h = nn.ModuleList([QWenBlock(config, i) for i in range(config.num_hidden_layers)])
 | 
					        self.h = nn.ModuleList([QWenBlock(config, i) for i in range(config.num_hidden_layers)])
 | 
				
			||||||
        self.ln_f = RMSNorm(
 | 
					        self.ln_f = RMSNorm(
 | 
				
			||||||
            self.embed_dim,
 | 
					            config.hidden_size,
 | 
				
			||||||
            eps=config.layer_norm_epsilon,
 | 
					            eps=config.layer_norm_epsilon,
 | 
				
			||||||
        )
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def forward(
 | 
					        self.dim = dim
 | 
				
			||||||
        self,
 | 
					        self.base = config.rotary_emb_base
 | 
				
			||||||
        input_ids: Optional[torch.LongTensor] = None,
 | 
					        inv_freq = 1.0 / (self.base ** (torch.arange(0, dim, 2).float() / dim))
 | 
				
			||||||
    ):
 | 
					        self.register_buffer("inv_freq", inv_freq, persistent=False)
 | 
				
			||||||
        input_shape = input_ids.size()
 | 
					        self._rotary_pos_emb_cache = None
 | 
				
			||||||
        input_ids = input_ids.view(-1, input_shape[-1])
 | 
					        self._seq_len_cached = 0
 | 
				
			||||||
        batch_size = input_ids.shape[0]
 | 
					        self._ntk_alpha_cached = 1.0
 | 
				
			||||||
        hidden_states = self.wte(input_ids)
 | 
					 | 
				
			||||||
        kv_seq_len = hidden_states.size()[1]
 | 
					 | 
				
			||||||
        rotary_pos_emb_list = [self.rotary_emb(kv_seq_len, ntk_alpha=1.0)]
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
        hidden_states = self.drop(hidden_states)
 | 
					    def update_rotary_pos_emb_cache(self, seqlen, ntk_alpha=1.0):
 | 
				
			||||||
        output_shape = input_shape + (hidden_states.size(-1),)
 | 
					        if seqlen > self._seq_len_cached or ntk_alpha != self._ntk_alpha_cached:
 | 
				
			||||||
 | 
					            base = self.base * ntk_alpha ** (self.dim / (self.dim - 2))
 | 
				
			||||||
 | 
					            self.inv_freq = 1.0 / (
 | 
				
			||||||
 | 
					                base ** (torch.arange(0, self.dim, 2, device=self.inv_freq.device).float() / self.dim)
 | 
				
			||||||
 | 
					            )
 | 
				
			||||||
 | 
					            self._seq_len_cached = max(2 * seqlen, 16)
 | 
				
			||||||
 | 
					            self._ntk_alpha_cached = ntk_alpha
 | 
				
			||||||
 | 
					            seq = torch.arange(self._seq_len_cached, device=self.inv_freq.device)
 | 
				
			||||||
 | 
					            freqs = torch.outer(seq.type_as(self.inv_freq), self.inv_freq)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        all_hidden_states = None
 | 
					            emb = torch.cat((freqs, freqs), dim=-1)
 | 
				
			||||||
        for block in self.h:
 | 
					            emb = rearrange(emb, "n d -> 1 n 1 d")
 | 
				
			||||||
            hidden_states = block(hidden_states, rotary_pos_emb_list=rotary_pos_emb_list)
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
        hidden_states = self.ln_f(hidden_states)
 | 
					            cos, sin = emb.cos(), emb.sin()
 | 
				
			||||||
        hidden_states = hidden_states.view(output_shape)
 | 
					            self._rotary_pos_emb_cache = [cos, sin]
 | 
				
			||||||
        return BaseModelOutputWithPast(last_hidden_state=hidden_states, hidden_states=all_hidden_states)
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class QWenLMHeadModel(nn.Module):
 | 
					class QWenLMHeadModel(nn.Module):
 | 
				
			||||||
| 
						 | 
					@ -264,51 +140,8 @@ class QWenLMHeadModel(nn.Module):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        self.transformer = QWenModel(config)
 | 
					        self.transformer = QWenModel(config)
 | 
				
			||||||
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
 | 
					        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
 | 
				
			||||||
        self.generation_config = GenerationConfig.from_model_config(config)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    def prepare_inputs_for_generation(self, input_ids, **kwargs):
 | 
					 | 
				
			||||||
        model_inputs = {"input_ids": input_ids}
 | 
					 | 
				
			||||||
        return model_inputs
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    def forward(
 | 
					 | 
				
			||||||
        self,
 | 
					 | 
				
			||||||
        input_ids: Optional[torch.LongTensor] = None,
 | 
					 | 
				
			||||||
        labels: Optional[torch.LongTensor] = None,
 | 
					 | 
				
			||||||
    ) -> Union[Tuple, CausalLMOutputWithPast]:
 | 
					 | 
				
			||||||
        transformer_outputs = self.transformer(
 | 
					 | 
				
			||||||
            input_ids,
 | 
					 | 
				
			||||||
        )
 | 
					 | 
				
			||||||
        hidden_states = transformer_outputs[0]
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        lm_logits = self.lm_head(hidden_states)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        loss = None
 | 
					 | 
				
			||||||
        if labels is not None:
 | 
					 | 
				
			||||||
            labels = labels.to(lm_logits.device)
 | 
					 | 
				
			||||||
            shift_logits = lm_logits[..., :-1, :].contiguous()
 | 
					 | 
				
			||||||
            shift_labels = labels[..., 1:].contiguous()
 | 
					 | 
				
			||||||
            loss_fct = CrossEntropyLoss()
 | 
					 | 
				
			||||||
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # shift_labels = torch.ones([1,19]).to(lm_logits.device).to(torch.int64)
 | 
					 | 
				
			||||||
        # shift_logits = lm_logits[..., :-1, :].contiguous()
 | 
					 | 
				
			||||||
        # loss_fct = CrossEntropyLoss()
 | 
					 | 
				
			||||||
        # loss = loss_fct(
 | 
					 | 
				
			||||||
        #     shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
 | 
					 | 
				
			||||||
        # )
 | 
					 | 
				
			||||||
        # loss.backward()
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        return CausalLMOutputWithPast(
 | 
					 | 
				
			||||||
            loss=loss,
 | 
					 | 
				
			||||||
            logits=lm_logits,
 | 
					 | 
				
			||||||
            hidden_states=transformer_outputs.hidden_states,
 | 
					 | 
				
			||||||
            attentions=transformer_outputs.attentions,
 | 
					 | 
				
			||||||
        )
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]]):
 | 
					    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]]):
 | 
				
			||||||
        load_in_8bit = False
 | 
					 | 
				
			||||||
        load_in_4bit = False
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        pretrained_model_name_or_path = str(pretrained_model_name_or_path)
 | 
					        pretrained_model_name_or_path = str(pretrained_model_name_or_path)
 | 
				
			||||||
        resolved_archive_file = os.path.join(pretrained_model_name_or_path, "model.safetensors.index.json")
 | 
					        resolved_archive_file = os.path.join(pretrained_model_name_or_path, "model.safetensors.index.json")
 | 
				
			||||||
        print(f"loading weights file {resolved_archive_file}")
 | 
					        print(f"loading weights file {resolved_archive_file}")
 | 
				
			||||||
| 
						 | 
					@ -317,8 +150,6 @@ class QWenLMHeadModel(nn.Module):
 | 
				
			||||||
        shard_filenames = sorted(set(index["weight_map"].values()))
 | 
					        shard_filenames = sorted(set(index["weight_map"].values()))
 | 
				
			||||||
        resolved_archive_file = [os.path.join(pretrained_model_name_or_path, f) for f in shard_filenames]
 | 
					        resolved_archive_file = [os.path.join(pretrained_model_name_or_path, f) for f in shard_filenames]
 | 
				
			||||||
        model = cls._load_pretrained_model(resolved_archive_file)
 | 
					        model = cls._load_pretrained_model(resolved_archive_file)
 | 
				
			||||||
        model.is_loaded_in_4bit = load_in_4bit
 | 
					 | 
				
			||||||
        model.is_loaded_in_8bit = load_in_8bit
 | 
					 | 
				
			||||||
        return model
 | 
					        return model
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def _load_state_dict_into_model(self, model_to_load, state_dict, start_prefix):
 | 
					    def _load_state_dict_into_model(self, model_to_load, state_dict, start_prefix):
 | 
				
			||||||
| 
						 | 
					@ -358,29 +189,22 @@ class QWenLMHeadModel(nn.Module):
 | 
				
			||||||
    @torch.no_grad()
 | 
					    @torch.no_grad()
 | 
				
			||||||
    def chat(
 | 
					    def chat(
 | 
				
			||||||
        self,
 | 
					        self,
 | 
				
			||||||
        tokenizer: PreTrainedTokenizer,
 | 
					        tokenizer,
 | 
				
			||||||
        query: str,
 | 
					        query: str,
 | 
				
			||||||
        query_assistant: str,
 | 
					        query_assistant: str,
 | 
				
			||||||
        history: Optional[HistoryType],
 | 
					        history: Optional[HistoryType],
 | 
				
			||||||
        system: str = "You are a helpful assistant.",
 | 
					        system: str = "You are a helpful assistant.",
 | 
				
			||||||
        **kwargs,
 | 
					        **kwargs,
 | 
				
			||||||
    ) -> Tuple[str, HistoryType]:
 | 
					    ) -> Tuple[str, HistoryType]:
 | 
				
			||||||
        generation_config = self.generation_config
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        if history is None:
 | 
					        if history is None:
 | 
				
			||||||
            history = []
 | 
					            history = []
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            history = copy.deepcopy(history)
 | 
					            history = copy.deepcopy(history)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        stop_words_ids = []
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        raw_text, context_tokens = make_context(tokenizer, query, query_assistant, history=history, system=system)
 | 
					        raw_text, context_tokens = make_context(tokenizer, query, query_assistant, history=history, system=system)
 | 
				
			||||||
 | 
					 | 
				
			||||||
        stop_words_ids.extend([[tokenizer.im_end_id], [tokenizer.im_start_id]])
 | 
					 | 
				
			||||||
        input_ids = torch.tensor([context_tokens]).to(next(self.parameters()).device)
 | 
					        input_ids = torch.tensor([context_tokens]).to(next(self.parameters()).device)
 | 
				
			||||||
        outputs = self.generate(
 | 
					        outputs = self.generate(
 | 
				
			||||||
            input_ids,
 | 
					            input_ids,
 | 
				
			||||||
            stop_words_ids=stop_words_ids,
 | 
					 | 
				
			||||||
            tokenizer=tokenizer,
 | 
					            tokenizer=tokenizer,
 | 
				
			||||||
            **kwargs,
 | 
					            **kwargs,
 | 
				
			||||||
        )
 | 
					        )
 | 
				
			||||||
| 
						 | 
					@ -397,31 +221,20 @@ class QWenLMHeadModel(nn.Module):
 | 
				
			||||||
    def generate(
 | 
					    def generate(
 | 
				
			||||||
        self,
 | 
					        self,
 | 
				
			||||||
        input_ids: Optional[torch.Tensor] = None,
 | 
					        input_ids: Optional[torch.Tensor] = None,
 | 
				
			||||||
        stop_words_ids=[],
 | 
					 | 
				
			||||||
        tokenizer=None,
 | 
					        tokenizer=None,
 | 
				
			||||||
        prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
 | 
					 | 
				
			||||||
        **kwargs,
 | 
					 | 
				
			||||||
    ) -> Union[GenerateOutput, torch.LongTensor]:
 | 
					    ) -> Union[GenerateOutput, torch.LongTensor]:
 | 
				
			||||||
        generation_config = self.generation_config
 | 
					        pad_token_id = self.config.pad_token_id
 | 
				
			||||||
        generation_config = copy.deepcopy(generation_config)
 | 
					        eos_token_id_tensor = torch.tensor([self.config.eos_token_id]).to(input_ids.device)
 | 
				
			||||||
        model_kwargs = generation_config.update(**kwargs)  # All unused kwargs must be model kwargs
 | 
					 | 
				
			||||||
        generation_config.validate()
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
        pad_token_id = generation_config.pad_token_id
 | 
					 | 
				
			||||||
        eos_token_id_tensor = torch.tensor([generation_config.eos_token_id]).to(input_ids.device)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        scores = None
 | 
					 | 
				
			||||||
        # keep track of which sequences are already finished
 | 
					        # keep track of which sequences are already finished
 | 
				
			||||||
        unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
 | 
					        unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        this_peer_finished = False
 | 
					        this_peer_finished = False
 | 
				
			||||||
        # auto-regressive generation
 | 
					        # auto-regressive generation
 | 
				
			||||||
        while True:
 | 
					        while True:
 | 
				
			||||||
            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
            # forward pass to get next token
 | 
					            # forward pass to get next token
 | 
				
			||||||
            outputs = self(**model_inputs)
 | 
					            outputs = forwardQWen(self, input_ids)
 | 
				
			||||||
            next_token_scores = outputs.logits[:, -1, :]
 | 
					            next_token_scores = outputs[:, -1, :]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            # repetition_penalty
 | 
					            # repetition_penalty
 | 
				
			||||||
            penalty = self.config.repetition_penalty
 | 
					            penalty = self.config.repetition_penalty
 | 
				
			||||||
| 
						 | 
					@ -475,64 +288,120 @@ class QWenLMHeadModel(nn.Module):
 | 
				
			||||||
        return input_ids
 | 
					        return input_ids
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class RotaryEmbedding(torch.nn.Module):
 | 
					def forwardAttention(
 | 
				
			||||||
    def __init__(self, dim, base=10000):
 | 
					    attention,
 | 
				
			||||||
        super().__init__()
 | 
					    hidden_states: Optional[Tuple[torch.FloatTensor]],
 | 
				
			||||||
        self.dim = dim
 | 
					    rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
 | 
				
			||||||
        self.base = base
 | 
					):
 | 
				
			||||||
        inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
 | 
					    def apply_rotary_pos_emb(t, freqs):
 | 
				
			||||||
        self.register_buffer("inv_freq", inv_freq, persistent=False)
 | 
					        def _rotate_half(x):
 | 
				
			||||||
        self._rotary_pos_emb_cache = None
 | 
					            x = rearrange(x, "... (j d) -> ... j d", j=2)
 | 
				
			||||||
        self._seq_len_cached = 0
 | 
					            x1, x2 = x.unbind(dim=-2)
 | 
				
			||||||
        self._ntk_alpha_cached = 1.0
 | 
					            return torch.cat((-x2, x1), dim=-1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def update_rotary_pos_emb_cache(self, seqlen, ntk_alpha=1.0):
 | 
					        rot_dim = freqs[0].shape[-1]
 | 
				
			||||||
        if seqlen > self._seq_len_cached or ntk_alpha != self._ntk_alpha_cached:
 | 
					        cos, sin = freqs
 | 
				
			||||||
            base = self.base * ntk_alpha ** (self.dim / (self.dim - 2))
 | 
					        t_float = t.float()
 | 
				
			||||||
            self.inv_freq = 1.0 / (
 | 
					        t_rot, t_pass = t_float[..., :rot_dim], t_float[..., rot_dim:]
 | 
				
			||||||
                base ** (torch.arange(0, self.dim, 2, device=self.inv_freq.device).float() / self.dim)
 | 
					        t_rot = (t_rot * cos) + (_rotate_half(t_rot) * sin)
 | 
				
			||||||
            )
 | 
					        return torch.cat((t_rot, t_pass), dim=-1).type_as(t)
 | 
				
			||||||
            self._seq_len_cached = max(2 * seqlen, 16)
 | 
					 | 
				
			||||||
            self._ntk_alpha_cached = ntk_alpha
 | 
					 | 
				
			||||||
            seq = torch.arange(self._seq_len_cached, device=self.inv_freq.device)
 | 
					 | 
				
			||||||
            freqs = torch.outer(seq.type_as(self.inv_freq), self.inv_freq)
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
            emb = torch.cat((freqs, freqs), dim=-1)
 | 
					    atten = attention
 | 
				
			||||||
            emb = rearrange(emb, "n d -> 1 n 1 d")
 | 
					    mixed_x_layer = atten.c_attn(hidden_states)
 | 
				
			||||||
 | 
					    query, key, value = mixed_x_layer.split(atten.split_size, dim=2)
 | 
				
			||||||
 | 
					    query = atten._split_heads(query, atten.num_heads, atten.head_dim)
 | 
				
			||||||
 | 
					    key = atten._split_heads(key, atten.num_heads, atten.head_dim)
 | 
				
			||||||
 | 
					    value = atten._split_heads(value, atten.num_heads, atten.head_dim)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            cos, sin = emb.cos(), emb.sin()
 | 
					    rotary_pos_emb = rotary_pos_emb_list[0]
 | 
				
			||||||
            self._rotary_pos_emb_cache = [cos, sin]
 | 
					    rotary_pos_emb = [i[:, -query.shape[1] :, :, :] for i in rotary_pos_emb]
 | 
				
			||||||
 | 
					    rotary_pos_emb = (rotary_pos_emb,) * 2
 | 
				
			||||||
 | 
					    query = apply_rotary_pos_emb(query, rotary_pos_emb[0])
 | 
				
			||||||
 | 
					    key = apply_rotary_pos_emb(key, rotary_pos_emb[1])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def forward(self, max_seq_len, ntk_alpha=1.0):
 | 
					    key_size = key.size(1)
 | 
				
			||||||
        self.update_rotary_pos_emb_cache(max_seq_len, ntk_alpha)
 | 
					    causal_mask = torch.tril(torch.ones((key_size, key_size), dtype=torch.bool, device=query.device)).view(
 | 
				
			||||||
        cos, sin = self._rotary_pos_emb_cache
 | 
					        1, 1, key_size, key_size
 | 
				
			||||||
        return [cos[:, :max_seq_len], sin[:, :max_seq_len]]
 | 
					    )
 | 
				
			||||||
 | 
					    query = query.permute(0, 2, 1, 3)
 | 
				
			||||||
 | 
					    key = key.permute(0, 2, 1, 3)
 | 
				
			||||||
 | 
					    value = value.permute(0, 2, 1, 3)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # qk = query @ key.transpose(-2, -1)
 | 
				
			||||||
 | 
					    # qk = qk[0]
 | 
				
			||||||
 | 
					    # prePath = "../generated/query_matmul_key/img/"
 | 
				
			||||||
 | 
					    # show.DumpTensorToImage(
 | 
				
			||||||
 | 
					    #     qk, prePath + "q_matmul_k_sequence_" + str(key_size) + "_layer_" + str(self.index) + ".png"
 | 
				
			||||||
 | 
					    # )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    attn_output = F.scaled_dot_product_attention(query, key, value, attn_mask=causal_mask).transpose(1, 2)
 | 
				
			||||||
 | 
					    context_layer = atten._merge_heads(attn_output, atten.num_heads, atten.head_dim)
 | 
				
			||||||
 | 
					    attn_output = atten.c_proj(context_layer)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    return attn_output
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def _rotate_half(x):
 | 
					def forwardQWenBlock(
 | 
				
			||||||
    x = rearrange(x, "... (j d) -> ... j d", j=2)
 | 
					    block,
 | 
				
			||||||
    x1, x2 = x.unbind(dim=-2)
 | 
					    hidden_states: Optional[Tuple[torch.FloatTensor]],
 | 
				
			||||||
    return torch.cat((-x2, x1), dim=-1)
 | 
					    rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
 | 
				
			||||||
 | 
					):
 | 
				
			||||||
 | 
					    layernorm_output = block.ln_1(hidden_states)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    attn_outputs = forwardAttention(block.attn, layernorm_output, rotary_pos_emb_list)
 | 
				
			||||||
 | 
					    attn_output = attn_outputs[0]
 | 
				
			||||||
 | 
					    layernorm_input = attn_output + hidden_states
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    layernorm_output = block.ln_2(layernorm_input)
 | 
				
			||||||
 | 
					    a1 = block.mlp.w1(layernorm_output)
 | 
				
			||||||
 | 
					    a2 = block.mlp.w2(layernorm_output)
 | 
				
			||||||
 | 
					    intermediate_parallel = a1 * F.silu(a2)
 | 
				
			||||||
 | 
					    mlp_output = block.mlp.c_proj(intermediate_parallel)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    hidden_states = layernorm_input + mlp_output
 | 
				
			||||||
 | 
					    return hidden_states
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def apply_rotary_pos_emb(t, freqs):
 | 
					def forwardQWen(
 | 
				
			||||||
    rot_dim = freqs[0].shape[-1]
 | 
					    qwen,
 | 
				
			||||||
    cos, sin = freqs
 | 
					    input_ids: Optional[torch.LongTensor] = None,
 | 
				
			||||||
    t_float = t.float()
 | 
					    labels: Optional[torch.LongTensor] = None,
 | 
				
			||||||
    t_rot, t_pass = t_float[..., :rot_dim], t_float[..., rot_dim:]
 | 
					):
 | 
				
			||||||
    t_rot = (t_rot * cos) + (_rotate_half(t_rot) * sin)
 | 
					    transfm = qwen.transformer
 | 
				
			||||||
    return torch.cat((t_rot, t_pass), dim=-1).type_as(t)
 | 
					    input_shape = input_ids.size()
 | 
				
			||||||
 | 
					    input_ids = input_ids.view(-1, input_shape[-1])
 | 
				
			||||||
 | 
					    hidden_states = transfm.wte(input_ids)
 | 
				
			||||||
 | 
					    kv_seq_len = hidden_states.size()[1]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    transfm.update_rotary_pos_emb_cache(kv_seq_len, ntk_alpha=1.0)
 | 
				
			||||||
 | 
					    cos, sin = transfm._rotary_pos_emb_cache
 | 
				
			||||||
 | 
					    rotary_pos_emb_list = [[cos[:, :kv_seq_len], sin[:, :kv_seq_len]]]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class RMSNorm(torch.nn.Module):
 | 
					    hidden_states = transfm.drop(hidden_states)
 | 
				
			||||||
    def __init__(self, dim: int, eps: float = 1e-6):
 | 
					    output_shape = input_shape + (hidden_states.size(-1),)
 | 
				
			||||||
        super().__init__()
 | 
					 | 
				
			||||||
        self.eps = eps
 | 
					 | 
				
			||||||
        self.weight = nn.Parameter(torch.ones(dim))
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def _norm(self, x):
 | 
					    for block in transfm.h:
 | 
				
			||||||
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
 | 
					        hidden_states = forwardQWenBlock(block, hidden_states, rotary_pos_emb_list=rotary_pos_emb_list)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def forward(self, x):
 | 
					    hidden_states = transfm.ln_f(hidden_states)
 | 
				
			||||||
        output = self._norm(x.float()).type_as(x)
 | 
					    hidden_states = hidden_states.view(output_shape)
 | 
				
			||||||
        return output * self.weight
 | 
					
 | 
				
			||||||
 | 
					    lm_logits = qwen.lm_head(hidden_states)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    loss = None
 | 
				
			||||||
 | 
					    if labels is not None:
 | 
				
			||||||
 | 
					        labels = labels.to(lm_logits.device)
 | 
				
			||||||
 | 
					        shift_logits = lm_logits[..., :-1, :].contiguous()
 | 
				
			||||||
 | 
					        shift_labels = labels[..., 1:].contiguous()
 | 
				
			||||||
 | 
					        loss_fct = CrossEntropyLoss()
 | 
				
			||||||
 | 
					        loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # shift_labels = torch.ones([1,19]).to(lm_logits.device).to(torch.int64)
 | 
				
			||||||
 | 
					    # shift_logits = lm_logits[..., :-1, :].contiguous()
 | 
				
			||||||
 | 
					    # loss_fct = CrossEntropyLoss()
 | 
				
			||||||
 | 
					    # loss = loss_fct(
 | 
				
			||||||
 | 
					    #     shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
 | 
				
			||||||
 | 
					    # )
 | 
				
			||||||
 | 
					    # loss.backward()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    return lm_logits
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in New Issue