Refine model of qwen.
This commit is contained in:
		
							parent
							
								
									40ae899515
								
							
						
					
					
						commit
						7c047f0b32
					
				
							
								
								
									
										44
									
								
								qwen/demo.py
								
								
								
								
							
							
						
						
									
										44
									
								
								qwen/demo.py
								
								
								
								
							| 
						 | 
				
			
			@ -24,33 +24,6 @@ model = QWenLMHeadModel(config)
 | 
			
		|||
 | 
			
		||||
print(model)
 | 
			
		||||
 | 
			
		||||
# QWenLMHeadModel(
 | 
			
		||||
#   (transformer): QWenModel(
 | 
			
		||||
#     (wte): Embedding(151936, 2048)
 | 
			
		||||
#     (drop): Dropout(p=0.0, inplace=False)
 | 
			
		||||
#     (rotary_emb): RotaryEmbedding()
 | 
			
		||||
#     (h): ModuleList(
 | 
			
		||||
#       (0-23): 24 x QWenBlock(
 | 
			
		||||
#         (ln_1): RMSNorm()
 | 
			
		||||
#         (attn): QWenAttention(
 | 
			
		||||
#           (c_attn): Linear(in_features=2048, out_features=6144, bias=True)
 | 
			
		||||
#           (c_proj): Linear(in_features=2048, out_features=2048, bias=False)
 | 
			
		||||
#           (attn_dropout): Dropout(p=0.0, inplace=False)
 | 
			
		||||
#         )
 | 
			
		||||
#         (ln_2): RMSNorm()
 | 
			
		||||
#         (mlp): QWenMLP(
 | 
			
		||||
#           (w1): Linear(in_features=2048, out_features=5504, bias=False)
 | 
			
		||||
#           (w2): Linear(in_features=2048, out_features=5504, bias=False)
 | 
			
		||||
#           (c_proj): Linear(in_features=5504, out_features=2048, bias=False)
 | 
			
		||||
#         )
 | 
			
		||||
#       )
 | 
			
		||||
#     )
 | 
			
		||||
#     (ln_f): RMSNorm()
 | 
			
		||||
#   )
 | 
			
		||||
#   (lm_head): Linear(in_features=2048, out_features=151936, bias=False)
 | 
			
		||||
# )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
 | 
			
		||||
model = model.from_pretrained(model_dir).cuda()
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -72,22 +45,9 @@ print(decode_tokens)
 | 
			
		|||
# <|im_start|>assistant
 | 
			
		||||
# 日本的首都东京。<|im_end|><|endoftext|>
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# # 第一轮对话
 | 
			
		||||
# response, history, decode_tokens = model.chat(tokenizer, "你好", "", history=None)
 | 
			
		||||
# print(decode_tokens)
 | 
			
		||||
# # 你好!很高兴为你提供帮助。
 | 
			
		||||
 | 
			
		||||
# 第二轮对话
 | 
			
		||||
response, history, decode_tokens = model.chat(tokenizer, "给我讲一个年轻人奋斗创业最终取得成功的故事。", "", history=None)
 | 
			
		||||
print(decode_tokens)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# <|im_start|>system
 | 
			
		||||
# You are a helpful assistant.<|im_end|>
 | 
			
		||||
# <|im_start|>user
 | 
			
		||||
# 你好<|im_end|>
 | 
			
		||||
# <|im_start|>assistant
 | 
			
		||||
# 莎士比亚是头一个使用“你好”这个词的文学家,他在《哈姆雷特》中写道:“你是谁?你在哪儿?
 | 
			
		||||
# ”他的这一段话,通常被认为是最早的使用“你好”这个词的文学记载。这句话在英国语中非常常见,
 | 
			
		||||
# 特别是在正式或礼貌的情况下。<|im_end|><|endoftext|>
 | 
			
		||||
if decode_tokens.split("\n")[-2] != """这个故事告诉我们,只要我们有决心和毅力,就一定能够克服困难,实现我们的梦想。<|im_end|>""":
 | 
			
		||||
    raise ()
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,47 +1,29 @@
 | 
			
		|||
import copy
 | 
			
		||||
import math
 | 
			
		||||
import inspect
 | 
			
		||||
import os
 | 
			
		||||
import sys
 | 
			
		||||
import gc
 | 
			
		||||
from tqdm import auto as tqdm_lib
 | 
			
		||||
import json
 | 
			
		||||
from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List, Any, Generator
 | 
			
		||||
from typing import Optional, Tuple, Union, Callable, List, Any, Generator
 | 
			
		||||
from einops import rearrange
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import torch.nn.functional as F
 | 
			
		||||
import torch.utils.checkpoint
 | 
			
		||||
 | 
			
		||||
from torch.nn import CrossEntropyLoss
 | 
			
		||||
from transformers import PreTrainedTokenizer, GenerationConfig, StoppingCriteriaList
 | 
			
		||||
from transformers.generation.logits_process import LogitsProcessorList
 | 
			
		||||
 | 
			
		||||
if TYPE_CHECKING:
 | 
			
		||||
    from transformers.generation.streamers import BaseStreamer
 | 
			
		||||
from transformers.generation.utils import GenerateOutput
 | 
			
		||||
from transformers.modeling_outputs import (
 | 
			
		||||
    BaseModelOutputWithPast,
 | 
			
		||||
    CausalLMOutputWithPast,
 | 
			
		||||
)
 | 
			
		||||
from transformers.modeling_utils import PreTrainedModel
 | 
			
		||||
from transformers.utils import logging
 | 
			
		||||
 | 
			
		||||
from torch import nn
 | 
			
		||||
from einops import rearrange
 | 
			
		||||
from safetensors.torch import load_file as safe_load_file
 | 
			
		||||
from safetensors.torch import save_file as safe_save_file
 | 
			
		||||
 | 
			
		||||
from transformers.generation.utils import GenerateOutput
 | 
			
		||||
from configuration_qwen import QWenConfig
 | 
			
		||||
from qwen_generation_utils import (
 | 
			
		||||
    HistoryType,
 | 
			
		||||
    make_context,
 | 
			
		||||
    decode_tokens,
 | 
			
		||||
    StopWordsLogitsProcessor,
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
from safetensors import safe_open
 | 
			
		||||
from safetensors.torch import load_file as safe_load_file
 | 
			
		||||
from safetensors.torch import save_file as safe_save_file
 | 
			
		||||
 | 
			
		||||
import sys
 | 
			
		||||
 | 
			
		||||
sys.path.append("..")
 | 
			
		||||
from tools import show
 | 
			
		||||
from tools import mem_tracker
 | 
			
		||||
| 
						 | 
				
			
			@ -50,39 +32,30 @@ from tools import mem_tracker
 | 
			
		|||
# tracker.track()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class RMSNorm(torch.nn.Module):
 | 
			
		||||
    def __init__(self, dim: int, eps: float = 1e-6):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.eps = eps
 | 
			
		||||
        self.weight = nn.Parameter(torch.ones(dim))
 | 
			
		||||
 | 
			
		||||
    def _norm(self, x):
 | 
			
		||||
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        return self._norm(x.float()).type_as(x) * self.weight
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class QWenAttention(nn.Module):
 | 
			
		||||
    def __init__(self, config, index):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
 | 
			
		||||
        self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
 | 
			
		||||
        self.seq_length = config.seq_length
 | 
			
		||||
 | 
			
		||||
        self.hidden_size = config.hidden_size
 | 
			
		||||
        self.split_size = config.hidden_size
 | 
			
		||||
        self.num_heads = config.num_attention_heads
 | 
			
		||||
        self.head_dim = self.hidden_size // self.num_heads
 | 
			
		||||
 | 
			
		||||
        self.scale_attn_weights = True
 | 
			
		||||
 | 
			
		||||
        self.projection_size = config.kv_channels * config.num_attention_heads
 | 
			
		||||
 | 
			
		||||
        assert self.projection_size % config.num_attention_heads == 0
 | 
			
		||||
        self.hidden_size_per_attention_head = self.projection_size // config.num_attention_heads
 | 
			
		||||
 | 
			
		||||
        self.c_attn = nn.Linear(config.hidden_size, 3 * self.projection_size)
 | 
			
		||||
        self.c_proj = nn.Linear(config.hidden_size, self.projection_size, bias=not config.no_bias)
 | 
			
		||||
 | 
			
		||||
        self.use_dynamic_ntk = config.use_dynamic_ntk
 | 
			
		||||
 | 
			
		||||
        logn_list = [math.log(i, self.seq_length) if i > self.seq_length else 1 for i in range(1, 32768)]
 | 
			
		||||
        logn_tensor = torch.tensor(logn_list)[None, :, None, None]
 | 
			
		||||
        self.register_buffer("logn_tensor", logn_tensor, persistent=False)
 | 
			
		||||
 | 
			
		||||
        self.attn_dropout = nn.Dropout(config.attn_dropout_prob)
 | 
			
		||||
        self.softmax_in_fp32 = config.softmax_in_fp32 if hasattr(config, "softmax_in_fp32") else False
 | 
			
		||||
        cache_dtype = torch.float
 | 
			
		||||
        self.cache_qmax = torch.tensor(torch.iinfo(torch.uint8).max, dtype=cache_dtype)
 | 
			
		||||
        self.cache_qmin = torch.tensor(torch.iinfo(torch.uint8).min, dtype=cache_dtype)
 | 
			
		||||
        self.index = index
 | 
			
		||||
 | 
			
		||||
    def _split_heads(self, tensor, num_heads, attn_head_size):
 | 
			
		||||
| 
						 | 
				
			
			@ -95,53 +68,6 @@ class QWenAttention(nn.Module):
 | 
			
		|||
        new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
 | 
			
		||||
        return tensor.view(new_shape)
 | 
			
		||||
 | 
			
		||||
    def forward(
 | 
			
		||||
        self,
 | 
			
		||||
        hidden_states: Optional[Tuple[torch.FloatTensor]],
 | 
			
		||||
        rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
 | 
			
		||||
    ):
 | 
			
		||||
        mixed_x_layer = self.c_attn(hidden_states)
 | 
			
		||||
        query, key, value = mixed_x_layer.split(self.split_size, dim=2)
 | 
			
		||||
        query = self._split_heads(query, self.num_heads, self.head_dim)
 | 
			
		||||
        key = self._split_heads(key, self.num_heads, self.head_dim)
 | 
			
		||||
        value = self._split_heads(value, self.num_heads, self.head_dim)
 | 
			
		||||
 | 
			
		||||
        rotary_pos_emb = rotary_pos_emb_list[0]
 | 
			
		||||
        rotary_pos_emb = [i[:, -query.shape[1] :, :, :] for i in rotary_pos_emb]
 | 
			
		||||
        rotary_pos_emb = (rotary_pos_emb,) * 2
 | 
			
		||||
        q_pos_emb, k_pos_emb = rotary_pos_emb
 | 
			
		||||
        # Slice the pos emb for current inference
 | 
			
		||||
        query = apply_rotary_pos_emb(query, q_pos_emb)
 | 
			
		||||
        key = apply_rotary_pos_emb(key, k_pos_emb)
 | 
			
		||||
 | 
			
		||||
        key_size = key.size(1)
 | 
			
		||||
        if key_size > self.seq_length and not self.training:
 | 
			
		||||
            seq_start = key.size(1) - query.size(1)
 | 
			
		||||
            seq_end = key.size(1)
 | 
			
		||||
            logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :].type_as(query)
 | 
			
		||||
            query = query * logn_tensor.expand_as(query)
 | 
			
		||||
 | 
			
		||||
        key_size = key.size(1)
 | 
			
		||||
        causal_mask = torch.tril(torch.ones((key_size, key_size), dtype=torch.bool, device=query.device)).view(
 | 
			
		||||
            1, 1, key_size, key_size
 | 
			
		||||
        )
 | 
			
		||||
        query = query.permute(0, 2, 1, 3)
 | 
			
		||||
        key = key.permute(0, 2, 1, 3)
 | 
			
		||||
        value = value.permute(0, 2, 1, 3)
 | 
			
		||||
 | 
			
		||||
        # qk = query @ key.transpose(-2, -1)
 | 
			
		||||
        # qk = qk[0]
 | 
			
		||||
        # prePath = "../generated/query_matmul_key/img/"
 | 
			
		||||
        # show.DumpTensorToImage(
 | 
			
		||||
        #     qk, prePath + "q_matmul_k_sequence_" + str(key_size) + "_layer_" + str(self.index) + ".png"
 | 
			
		||||
        # )
 | 
			
		||||
 | 
			
		||||
        attn_output = F.scaled_dot_product_attention(query, key, value, attn_mask=causal_mask).transpose(1, 2)
 | 
			
		||||
        context_layer = self._merge_heads(attn_output, self.num_heads, self.head_dim)
 | 
			
		||||
        attn_output = self.c_proj(context_layer)
 | 
			
		||||
 | 
			
		||||
        return attn_output
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class QWenMLP(nn.Module):
 | 
			
		||||
    def __init__(self, config):
 | 
			
		||||
| 
						 | 
				
			
			@ -151,110 +77,60 @@ class QWenMLP(nn.Module):
 | 
			
		|||
        self.w2 = nn.Linear(config.hidden_size, ff_dim_in, bias=not config.no_bias)
 | 
			
		||||
        self.c_proj = nn.Linear(ff_dim_in, config.hidden_size, bias=not config.no_bias)
 | 
			
		||||
 | 
			
		||||
    def forward(self, hidden_states):
 | 
			
		||||
        a1 = self.w1(hidden_states)
 | 
			
		||||
        a2 = self.w2(hidden_states)
 | 
			
		||||
        intermediate_parallel = a1 * F.silu(a2)
 | 
			
		||||
        output = self.c_proj(intermediate_parallel)
 | 
			
		||||
        return output
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class QWenBlock(nn.Module):
 | 
			
		||||
    def __init__(self, config, index):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        hidden_size = config.hidden_size
 | 
			
		||||
 | 
			
		||||
        self.ln_1 = RMSNorm(
 | 
			
		||||
            hidden_size,
 | 
			
		||||
            config.hidden_size,
 | 
			
		||||
            eps=config.layer_norm_epsilon,
 | 
			
		||||
        )
 | 
			
		||||
        self.attn = QWenAttention(config, index)
 | 
			
		||||
        self.ln_2 = RMSNorm(
 | 
			
		||||
            hidden_size,
 | 
			
		||||
            config.hidden_size,
 | 
			
		||||
            eps=config.layer_norm_epsilon,
 | 
			
		||||
        )
 | 
			
		||||
        self.mlp = QWenMLP(config)
 | 
			
		||||
        self.index = index
 | 
			
		||||
 | 
			
		||||
    def forward(
 | 
			
		||||
        self,
 | 
			
		||||
        hidden_states: Optional[Tuple[torch.FloatTensor]],
 | 
			
		||||
        rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
 | 
			
		||||
    ):
 | 
			
		||||
        layernorm_output = self.ln_1(hidden_states)
 | 
			
		||||
 | 
			
		||||
        attn_outputs = self.attn(layernorm_output, rotary_pos_emb_list)
 | 
			
		||||
        attn_output = attn_outputs[0]
 | 
			
		||||
        residual = hidden_states
 | 
			
		||||
        layernorm_input = attn_output + residual
 | 
			
		||||
 | 
			
		||||
        layernorm_output = self.ln_2(layernorm_input)
 | 
			
		||||
        residual = layernorm_input
 | 
			
		||||
        mlp_output = self.mlp(layernorm_output)
 | 
			
		||||
        hidden_states = residual + mlp_output
 | 
			
		||||
        return hidden_states
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class QWenPreTrainedModel(nn.Module):
 | 
			
		||||
    config_class = QWenConfig
 | 
			
		||||
    base_model_prefix = "transformer"
 | 
			
		||||
    is_parallelizable = False
 | 
			
		||||
    supports_gradient_checkpointing = True
 | 
			
		||||
    _no_split_modules = ["QWenBlock"]
 | 
			
		||||
 | 
			
		||||
    def __init__(self, *inputs, **kwargs):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class QWenModel(QWenPreTrainedModel):
 | 
			
		||||
class QWenModel(nn.Module):
 | 
			
		||||
    def __init__(self, config):
 | 
			
		||||
        super().__init__(config)
 | 
			
		||||
        self.vocab_size = config.vocab_size
 | 
			
		||||
        self.num_hidden_layers = config.num_hidden_layers
 | 
			
		||||
        self.embed_dim = config.hidden_size
 | 
			
		||||
 | 
			
		||||
        self.use_dynamic_ntk = config.use_dynamic_ntk
 | 
			
		||||
        self.seq_length = config.seq_length
 | 
			
		||||
 | 
			
		||||
        self.wte = nn.Embedding(self.vocab_size, self.embed_dim)
 | 
			
		||||
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.wte = nn.Embedding(config.vocab_size, config.hidden_size)
 | 
			
		||||
        self.drop = nn.Dropout(config.emb_dropout_prob)
 | 
			
		||||
 | 
			
		||||
        if config.rotary_pct == 1.0:
 | 
			
		||||
            self.rotary_ndims = None
 | 
			
		||||
        else:
 | 
			
		||||
            assert config.rotary_pct < 1
 | 
			
		||||
            self.rotary_ndims = int(config.kv_channels * config.rotary_pct)
 | 
			
		||||
        dim = self.rotary_ndims if self.rotary_ndims is not None else config.kv_channels
 | 
			
		||||
        self.rotary_emb = RotaryEmbedding(dim, base=config.rotary_emb_base)
 | 
			
		||||
        dim = config.kv_channels
 | 
			
		||||
 | 
			
		||||
        self.h = nn.ModuleList([QWenBlock(config, i) for i in range(config.num_hidden_layers)])
 | 
			
		||||
        self.ln_f = RMSNorm(
 | 
			
		||||
            self.embed_dim,
 | 
			
		||||
            config.hidden_size,
 | 
			
		||||
            eps=config.layer_norm_epsilon,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    def forward(
 | 
			
		||||
        self,
 | 
			
		||||
        input_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    ):
 | 
			
		||||
        input_shape = input_ids.size()
 | 
			
		||||
        input_ids = input_ids.view(-1, input_shape[-1])
 | 
			
		||||
        batch_size = input_ids.shape[0]
 | 
			
		||||
        hidden_states = self.wte(input_ids)
 | 
			
		||||
        kv_seq_len = hidden_states.size()[1]
 | 
			
		||||
        rotary_pos_emb_list = [self.rotary_emb(kv_seq_len, ntk_alpha=1.0)]
 | 
			
		||||
        self.dim = dim
 | 
			
		||||
        self.base = config.rotary_emb_base
 | 
			
		||||
        inv_freq = 1.0 / (self.base ** (torch.arange(0, dim, 2).float() / dim))
 | 
			
		||||
        self.register_buffer("inv_freq", inv_freq, persistent=False)
 | 
			
		||||
        self._rotary_pos_emb_cache = None
 | 
			
		||||
        self._seq_len_cached = 0
 | 
			
		||||
        self._ntk_alpha_cached = 1.0
 | 
			
		||||
 | 
			
		||||
        hidden_states = self.drop(hidden_states)
 | 
			
		||||
        output_shape = input_shape + (hidden_states.size(-1),)
 | 
			
		||||
    def update_rotary_pos_emb_cache(self, seqlen, ntk_alpha=1.0):
 | 
			
		||||
        if seqlen > self._seq_len_cached or ntk_alpha != self._ntk_alpha_cached:
 | 
			
		||||
            base = self.base * ntk_alpha ** (self.dim / (self.dim - 2))
 | 
			
		||||
            self.inv_freq = 1.0 / (
 | 
			
		||||
                base ** (torch.arange(0, self.dim, 2, device=self.inv_freq.device).float() / self.dim)
 | 
			
		||||
            )
 | 
			
		||||
            self._seq_len_cached = max(2 * seqlen, 16)
 | 
			
		||||
            self._ntk_alpha_cached = ntk_alpha
 | 
			
		||||
            seq = torch.arange(self._seq_len_cached, device=self.inv_freq.device)
 | 
			
		||||
            freqs = torch.outer(seq.type_as(self.inv_freq), self.inv_freq)
 | 
			
		||||
 | 
			
		||||
        all_hidden_states = None
 | 
			
		||||
        for block in self.h:
 | 
			
		||||
            hidden_states = block(hidden_states, rotary_pos_emb_list=rotary_pos_emb_list)
 | 
			
		||||
            emb = torch.cat((freqs, freqs), dim=-1)
 | 
			
		||||
            emb = rearrange(emb, "n d -> 1 n 1 d")
 | 
			
		||||
 | 
			
		||||
        hidden_states = self.ln_f(hidden_states)
 | 
			
		||||
        hidden_states = hidden_states.view(output_shape)
 | 
			
		||||
        return BaseModelOutputWithPast(last_hidden_state=hidden_states, hidden_states=all_hidden_states)
 | 
			
		||||
            cos, sin = emb.cos(), emb.sin()
 | 
			
		||||
            self._rotary_pos_emb_cache = [cos, sin]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class QWenLMHeadModel(nn.Module):
 | 
			
		||||
| 
						 | 
				
			
			@ -264,51 +140,8 @@ class QWenLMHeadModel(nn.Module):
 | 
			
		|||
 | 
			
		||||
        self.transformer = QWenModel(config)
 | 
			
		||||
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
 | 
			
		||||
        self.generation_config = GenerationConfig.from_model_config(config)
 | 
			
		||||
 | 
			
		||||
    def prepare_inputs_for_generation(self, input_ids, **kwargs):
 | 
			
		||||
        model_inputs = {"input_ids": input_ids}
 | 
			
		||||
        return model_inputs
 | 
			
		||||
 | 
			
		||||
    def forward(
 | 
			
		||||
        self,
 | 
			
		||||
        input_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
        labels: Optional[torch.LongTensor] = None,
 | 
			
		||||
    ) -> Union[Tuple, CausalLMOutputWithPast]:
 | 
			
		||||
        transformer_outputs = self.transformer(
 | 
			
		||||
            input_ids,
 | 
			
		||||
        )
 | 
			
		||||
        hidden_states = transformer_outputs[0]
 | 
			
		||||
 | 
			
		||||
        lm_logits = self.lm_head(hidden_states)
 | 
			
		||||
 | 
			
		||||
        loss = None
 | 
			
		||||
        if labels is not None:
 | 
			
		||||
            labels = labels.to(lm_logits.device)
 | 
			
		||||
            shift_logits = lm_logits[..., :-1, :].contiguous()
 | 
			
		||||
            shift_labels = labels[..., 1:].contiguous()
 | 
			
		||||
            loss_fct = CrossEntropyLoss()
 | 
			
		||||
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
 | 
			
		||||
 | 
			
		||||
        # shift_labels = torch.ones([1,19]).to(lm_logits.device).to(torch.int64)
 | 
			
		||||
        # shift_logits = lm_logits[..., :-1, :].contiguous()
 | 
			
		||||
        # loss_fct = CrossEntropyLoss()
 | 
			
		||||
        # loss = loss_fct(
 | 
			
		||||
        #     shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
 | 
			
		||||
        # )
 | 
			
		||||
        # loss.backward()
 | 
			
		||||
 | 
			
		||||
        return CausalLMOutputWithPast(
 | 
			
		||||
            loss=loss,
 | 
			
		||||
            logits=lm_logits,
 | 
			
		||||
            hidden_states=transformer_outputs.hidden_states,
 | 
			
		||||
            attentions=transformer_outputs.attentions,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]]):
 | 
			
		||||
        load_in_8bit = False
 | 
			
		||||
        load_in_4bit = False
 | 
			
		||||
 | 
			
		||||
        pretrained_model_name_or_path = str(pretrained_model_name_or_path)
 | 
			
		||||
        resolved_archive_file = os.path.join(pretrained_model_name_or_path, "model.safetensors.index.json")
 | 
			
		||||
        print(f"loading weights file {resolved_archive_file}")
 | 
			
		||||
| 
						 | 
				
			
			@ -317,8 +150,6 @@ class QWenLMHeadModel(nn.Module):
 | 
			
		|||
        shard_filenames = sorted(set(index["weight_map"].values()))
 | 
			
		||||
        resolved_archive_file = [os.path.join(pretrained_model_name_or_path, f) for f in shard_filenames]
 | 
			
		||||
        model = cls._load_pretrained_model(resolved_archive_file)
 | 
			
		||||
        model.is_loaded_in_4bit = load_in_4bit
 | 
			
		||||
        model.is_loaded_in_8bit = load_in_8bit
 | 
			
		||||
        return model
 | 
			
		||||
 | 
			
		||||
    def _load_state_dict_into_model(self, model_to_load, state_dict, start_prefix):
 | 
			
		||||
| 
						 | 
				
			
			@ -358,29 +189,22 @@ class QWenLMHeadModel(nn.Module):
 | 
			
		|||
    @torch.no_grad()
 | 
			
		||||
    def chat(
 | 
			
		||||
        self,
 | 
			
		||||
        tokenizer: PreTrainedTokenizer,
 | 
			
		||||
        tokenizer,
 | 
			
		||||
        query: str,
 | 
			
		||||
        query_assistant: str,
 | 
			
		||||
        history: Optional[HistoryType],
 | 
			
		||||
        system: str = "You are a helpful assistant.",
 | 
			
		||||
        **kwargs,
 | 
			
		||||
    ) -> Tuple[str, HistoryType]:
 | 
			
		||||
        generation_config = self.generation_config
 | 
			
		||||
 | 
			
		||||
        if history is None:
 | 
			
		||||
            history = []
 | 
			
		||||
        else:
 | 
			
		||||
            history = copy.deepcopy(history)
 | 
			
		||||
 | 
			
		||||
        stop_words_ids = []
 | 
			
		||||
 | 
			
		||||
        raw_text, context_tokens = make_context(tokenizer, query, query_assistant, history=history, system=system)
 | 
			
		||||
 | 
			
		||||
        stop_words_ids.extend([[tokenizer.im_end_id], [tokenizer.im_start_id]])
 | 
			
		||||
        input_ids = torch.tensor([context_tokens]).to(next(self.parameters()).device)
 | 
			
		||||
        outputs = self.generate(
 | 
			
		||||
            input_ids,
 | 
			
		||||
            stop_words_ids=stop_words_ids,
 | 
			
		||||
            tokenizer=tokenizer,
 | 
			
		||||
            **kwargs,
 | 
			
		||||
        )
 | 
			
		||||
| 
						 | 
				
			
			@ -397,31 +221,20 @@ class QWenLMHeadModel(nn.Module):
 | 
			
		|||
    def generate(
 | 
			
		||||
        self,
 | 
			
		||||
        input_ids: Optional[torch.Tensor] = None,
 | 
			
		||||
        stop_words_ids=[],
 | 
			
		||||
        tokenizer=None,
 | 
			
		||||
        prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
 | 
			
		||||
        **kwargs,
 | 
			
		||||
    ) -> Union[GenerateOutput, torch.LongTensor]:
 | 
			
		||||
        generation_config = self.generation_config
 | 
			
		||||
        generation_config = copy.deepcopy(generation_config)
 | 
			
		||||
        model_kwargs = generation_config.update(**kwargs)  # All unused kwargs must be model kwargs
 | 
			
		||||
        generation_config.validate()
 | 
			
		||||
        pad_token_id = self.config.pad_token_id
 | 
			
		||||
        eos_token_id_tensor = torch.tensor([self.config.eos_token_id]).to(input_ids.device)
 | 
			
		||||
 | 
			
		||||
        pad_token_id = generation_config.pad_token_id
 | 
			
		||||
        eos_token_id_tensor = torch.tensor([generation_config.eos_token_id]).to(input_ids.device)
 | 
			
		||||
 | 
			
		||||
        scores = None
 | 
			
		||||
        # keep track of which sequences are already finished
 | 
			
		||||
        unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
 | 
			
		||||
 | 
			
		||||
        this_peer_finished = False
 | 
			
		||||
        # auto-regressive generation
 | 
			
		||||
        while True:
 | 
			
		||||
            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
 | 
			
		||||
 | 
			
		||||
            # forward pass to get next token
 | 
			
		||||
            outputs = self(**model_inputs)
 | 
			
		||||
            next_token_scores = outputs.logits[:, -1, :]
 | 
			
		||||
            outputs = forwardQWen(self, input_ids)
 | 
			
		||||
            next_token_scores = outputs[:, -1, :]
 | 
			
		||||
 | 
			
		||||
            # repetition_penalty
 | 
			
		||||
            penalty = self.config.repetition_penalty
 | 
			
		||||
| 
						 | 
				
			
			@ -475,64 +288,120 @@ class QWenLMHeadModel(nn.Module):
 | 
			
		|||
        return input_ids
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class RotaryEmbedding(torch.nn.Module):
 | 
			
		||||
    def __init__(self, dim, base=10000):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.dim = dim
 | 
			
		||||
        self.base = base
 | 
			
		||||
        inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
 | 
			
		||||
        self.register_buffer("inv_freq", inv_freq, persistent=False)
 | 
			
		||||
        self._rotary_pos_emb_cache = None
 | 
			
		||||
        self._seq_len_cached = 0
 | 
			
		||||
        self._ntk_alpha_cached = 1.0
 | 
			
		||||
def forwardAttention(
 | 
			
		||||
    attention,
 | 
			
		||||
    hidden_states: Optional[Tuple[torch.FloatTensor]],
 | 
			
		||||
    rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
 | 
			
		||||
):
 | 
			
		||||
    def apply_rotary_pos_emb(t, freqs):
 | 
			
		||||
        def _rotate_half(x):
 | 
			
		||||
            x = rearrange(x, "... (j d) -> ... j d", j=2)
 | 
			
		||||
            x1, x2 = x.unbind(dim=-2)
 | 
			
		||||
            return torch.cat((-x2, x1), dim=-1)
 | 
			
		||||
 | 
			
		||||
    def update_rotary_pos_emb_cache(self, seqlen, ntk_alpha=1.0):
 | 
			
		||||
        if seqlen > self._seq_len_cached or ntk_alpha != self._ntk_alpha_cached:
 | 
			
		||||
            base = self.base * ntk_alpha ** (self.dim / (self.dim - 2))
 | 
			
		||||
            self.inv_freq = 1.0 / (
 | 
			
		||||
                base ** (torch.arange(0, self.dim, 2, device=self.inv_freq.device).float() / self.dim)
 | 
			
		||||
            )
 | 
			
		||||
            self._seq_len_cached = max(2 * seqlen, 16)
 | 
			
		||||
            self._ntk_alpha_cached = ntk_alpha
 | 
			
		||||
            seq = torch.arange(self._seq_len_cached, device=self.inv_freq.device)
 | 
			
		||||
            freqs = torch.outer(seq.type_as(self.inv_freq), self.inv_freq)
 | 
			
		||||
        rot_dim = freqs[0].shape[-1]
 | 
			
		||||
        cos, sin = freqs
 | 
			
		||||
        t_float = t.float()
 | 
			
		||||
        t_rot, t_pass = t_float[..., :rot_dim], t_float[..., rot_dim:]
 | 
			
		||||
        t_rot = (t_rot * cos) + (_rotate_half(t_rot) * sin)
 | 
			
		||||
        return torch.cat((t_rot, t_pass), dim=-1).type_as(t)
 | 
			
		||||
 | 
			
		||||
            emb = torch.cat((freqs, freqs), dim=-1)
 | 
			
		||||
            emb = rearrange(emb, "n d -> 1 n 1 d")
 | 
			
		||||
    atten = attention
 | 
			
		||||
    mixed_x_layer = atten.c_attn(hidden_states)
 | 
			
		||||
    query, key, value = mixed_x_layer.split(atten.split_size, dim=2)
 | 
			
		||||
    query = atten._split_heads(query, atten.num_heads, atten.head_dim)
 | 
			
		||||
    key = atten._split_heads(key, atten.num_heads, atten.head_dim)
 | 
			
		||||
    value = atten._split_heads(value, atten.num_heads, atten.head_dim)
 | 
			
		||||
 | 
			
		||||
            cos, sin = emb.cos(), emb.sin()
 | 
			
		||||
            self._rotary_pos_emb_cache = [cos, sin]
 | 
			
		||||
    rotary_pos_emb = rotary_pos_emb_list[0]
 | 
			
		||||
    rotary_pos_emb = [i[:, -query.shape[1] :, :, :] for i in rotary_pos_emb]
 | 
			
		||||
    rotary_pos_emb = (rotary_pos_emb,) * 2
 | 
			
		||||
    query = apply_rotary_pos_emb(query, rotary_pos_emb[0])
 | 
			
		||||
    key = apply_rotary_pos_emb(key, rotary_pos_emb[1])
 | 
			
		||||
 | 
			
		||||
    def forward(self, max_seq_len, ntk_alpha=1.0):
 | 
			
		||||
        self.update_rotary_pos_emb_cache(max_seq_len, ntk_alpha)
 | 
			
		||||
        cos, sin = self._rotary_pos_emb_cache
 | 
			
		||||
        return [cos[:, :max_seq_len], sin[:, :max_seq_len]]
 | 
			
		||||
    key_size = key.size(1)
 | 
			
		||||
    causal_mask = torch.tril(torch.ones((key_size, key_size), dtype=torch.bool, device=query.device)).view(
 | 
			
		||||
        1, 1, key_size, key_size
 | 
			
		||||
    )
 | 
			
		||||
    query = query.permute(0, 2, 1, 3)
 | 
			
		||||
    key = key.permute(0, 2, 1, 3)
 | 
			
		||||
    value = value.permute(0, 2, 1, 3)
 | 
			
		||||
 | 
			
		||||
    # qk = query @ key.transpose(-2, -1)
 | 
			
		||||
    # qk = qk[0]
 | 
			
		||||
    # prePath = "../generated/query_matmul_key/img/"
 | 
			
		||||
    # show.DumpTensorToImage(
 | 
			
		||||
    #     qk, prePath + "q_matmul_k_sequence_" + str(key_size) + "_layer_" + str(self.index) + ".png"
 | 
			
		||||
    # )
 | 
			
		||||
 | 
			
		||||
    attn_output = F.scaled_dot_product_attention(query, key, value, attn_mask=causal_mask).transpose(1, 2)
 | 
			
		||||
    context_layer = atten._merge_heads(attn_output, atten.num_heads, atten.head_dim)
 | 
			
		||||
    attn_output = atten.c_proj(context_layer)
 | 
			
		||||
 | 
			
		||||
    return attn_output
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _rotate_half(x):
 | 
			
		||||
    x = rearrange(x, "... (j d) -> ... j d", j=2)
 | 
			
		||||
    x1, x2 = x.unbind(dim=-2)
 | 
			
		||||
    return torch.cat((-x2, x1), dim=-1)
 | 
			
		||||
def forwardQWenBlock(
 | 
			
		||||
    block,
 | 
			
		||||
    hidden_states: Optional[Tuple[torch.FloatTensor]],
 | 
			
		||||
    rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
 | 
			
		||||
):
 | 
			
		||||
    layernorm_output = block.ln_1(hidden_states)
 | 
			
		||||
 | 
			
		||||
    attn_outputs = forwardAttention(block.attn, layernorm_output, rotary_pos_emb_list)
 | 
			
		||||
    attn_output = attn_outputs[0]
 | 
			
		||||
    layernorm_input = attn_output + hidden_states
 | 
			
		||||
 | 
			
		||||
    layernorm_output = block.ln_2(layernorm_input)
 | 
			
		||||
    a1 = block.mlp.w1(layernorm_output)
 | 
			
		||||
    a2 = block.mlp.w2(layernorm_output)
 | 
			
		||||
    intermediate_parallel = a1 * F.silu(a2)
 | 
			
		||||
    mlp_output = block.mlp.c_proj(intermediate_parallel)
 | 
			
		||||
 | 
			
		||||
    hidden_states = layernorm_input + mlp_output
 | 
			
		||||
    return hidden_states
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def apply_rotary_pos_emb(t, freqs):
 | 
			
		||||
    rot_dim = freqs[0].shape[-1]
 | 
			
		||||
    cos, sin = freqs
 | 
			
		||||
    t_float = t.float()
 | 
			
		||||
    t_rot, t_pass = t_float[..., :rot_dim], t_float[..., rot_dim:]
 | 
			
		||||
    t_rot = (t_rot * cos) + (_rotate_half(t_rot) * sin)
 | 
			
		||||
    return torch.cat((t_rot, t_pass), dim=-1).type_as(t)
 | 
			
		||||
def forwardQWen(
 | 
			
		||||
    qwen,
 | 
			
		||||
    input_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    labels: Optional[torch.LongTensor] = None,
 | 
			
		||||
):
 | 
			
		||||
    transfm = qwen.transformer
 | 
			
		||||
    input_shape = input_ids.size()
 | 
			
		||||
    input_ids = input_ids.view(-1, input_shape[-1])
 | 
			
		||||
    hidden_states = transfm.wte(input_ids)
 | 
			
		||||
    kv_seq_len = hidden_states.size()[1]
 | 
			
		||||
 | 
			
		||||
    transfm.update_rotary_pos_emb_cache(kv_seq_len, ntk_alpha=1.0)
 | 
			
		||||
    cos, sin = transfm._rotary_pos_emb_cache
 | 
			
		||||
    rotary_pos_emb_list = [[cos[:, :kv_seq_len], sin[:, :kv_seq_len]]]
 | 
			
		||||
 | 
			
		||||
class RMSNorm(torch.nn.Module):
 | 
			
		||||
    def __init__(self, dim: int, eps: float = 1e-6):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.eps = eps
 | 
			
		||||
        self.weight = nn.Parameter(torch.ones(dim))
 | 
			
		||||
    hidden_states = transfm.drop(hidden_states)
 | 
			
		||||
    output_shape = input_shape + (hidden_states.size(-1),)
 | 
			
		||||
 | 
			
		||||
    def _norm(self, x):
 | 
			
		||||
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
 | 
			
		||||
    for block in transfm.h:
 | 
			
		||||
        hidden_states = forwardQWenBlock(block, hidden_states, rotary_pos_emb_list=rotary_pos_emb_list)
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        output = self._norm(x.float()).type_as(x)
 | 
			
		||||
        return output * self.weight
 | 
			
		||||
    hidden_states = transfm.ln_f(hidden_states)
 | 
			
		||||
    hidden_states = hidden_states.view(output_shape)
 | 
			
		||||
 | 
			
		||||
    lm_logits = qwen.lm_head(hidden_states)
 | 
			
		||||
 | 
			
		||||
    loss = None
 | 
			
		||||
    if labels is not None:
 | 
			
		||||
        labels = labels.to(lm_logits.device)
 | 
			
		||||
        shift_logits = lm_logits[..., :-1, :].contiguous()
 | 
			
		||||
        shift_labels = labels[..., 1:].contiguous()
 | 
			
		||||
        loss_fct = CrossEntropyLoss()
 | 
			
		||||
        loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
 | 
			
		||||
 | 
			
		||||
    # shift_labels = torch.ones([1,19]).to(lm_logits.device).to(torch.int64)
 | 
			
		||||
    # shift_logits = lm_logits[..., :-1, :].contiguous()
 | 
			
		||||
    # loss_fct = CrossEntropyLoss()
 | 
			
		||||
    # loss = loss_fct(
 | 
			
		||||
    #     shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
 | 
			
		||||
    # )
 | 
			
		||||
    # loss.backward()
 | 
			
		||||
 | 
			
		||||
    return lm_logits
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue