From 81f203ce5984821987c79a2973c88605e4919d1d Mon Sep 17 00:00:00 2001 From: Colin Date: Sun, 22 Sep 2024 15:18:08 +0800 Subject: [PATCH] update the max grad's weight. --- unsuper/minist.py | 20 ++++++++++++++------ 1 file changed, 14 insertions(+), 6 deletions(-) diff --git a/unsuper/minist.py b/unsuper/minist.py index ec02507..52bb775 100644 --- a/unsuper/minist.py +++ b/unsuper/minist.py @@ -65,17 +65,16 @@ class ConvNet(nn.Module): show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]), dir + "/conv1_output.png", Contrast=[-1.0, 1.0]) # show.DumpTensorToLog(x, "conv1_output.png") - x = self.pool(F.relu(x)) + x = self.pool(x) x = self.conv2(x) w = self.conv2.weight show.DumpTensorToImage( w.view(-1, w.shape[2], w.shape[3]).cpu(), dir + "/conv2_weight.png", Contrast=[-1.0, 1.0] ) - show.DumpTensorToImage( x.view(-1, x.shape[2], x.shape[3]).cpu(), dir + "/conv2_output.png", Contrast=[-1.0, 1.0] ) - x = self.pool(F.relu(x)) + x = self.pool(x) show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]).cpu(), dir + "/pool_output.png", Contrast=[-1.0, 1.0]) pool_shape = x.shape x = x.view(x.shape[0], -1) @@ -105,7 +104,7 @@ model = ConvNet().to(device) model.train() # Train the model unsuper -epochs = 10 +epochs = 2 model.conv1.weight.requires_grad = True model.conv2.weight.requires_grad = False model.fc1.weight.requires_grad = False @@ -114,7 +113,10 @@ for epoch in range(epochs): for i, (images, labels) in enumerate(train_loader): images = images.to(device) outputs = model.forward_unsuper(images) - sample = outputs.view(outputs.shape[0], -1) + + outputs = outputs.permute(1, 0, 2, 3) # 64 8 24 24 -> 8 64 24 24 + sample = outputs.reshape(outputs.shape[0], -1) # -> 8 36864 + sample_mean = torch.mean(sample, dim=1, keepdim=True) diff_mean = torch.mean(torch.abs(sample - sample_mean), dim=1, keepdim=True) diff_ratio = (sample - sample_mean) / diff_mean @@ -123,7 +125,13 @@ for epoch in range(epochs): loss = F.l1_loss(diff_ratio_mean, label) model.conv1.weight.grad = None loss.backward() - model.conv1.weight.data = model.conv1.weight.data - model.conv1.weight.grad * 0.2 + + grad = model.conv1.weight.data + grad = grad.view(8, -1) + grad_mean = torch.mean(grad, dim=1) + max, index = torch.max(grad_mean, dim=0) + + model.conv1.weight.data[index] = model.conv1.weight.data[index] - model.conv1.weight.grad[index] * 0.2 if (i + 1) % 100 == 0: print(f"Epoch [{epoch+1}/{epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.8f}")