Add binary/mnist.py.

This commit is contained in:
Colin 2025-05-20 14:07:10 +08:00
parent db97131caf
commit 9194595716
1 changed files with 278 additions and 0 deletions

278
binary/mnist.py Normal file
View File

@ -0,0 +1,278 @@
import os
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
from torchvision import transforms
from torch.utils.data import DataLoader
import math
import torch.nn.functional as F
import numpy as np
torch.manual_seed(1234)
np.random.seed(1234)
torch.cuda.manual_seed_all(1234)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))] # MNIST数据集的均值和标准差
)
train_dataset = torchvision.datasets.MNIST(root="./data", train=True, download=True, transform=transform)
test_dataset = torchvision.datasets.MNIST(root="./data", train=False, download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=1024, shuffle=False)
def to_binary_tensor(input_tensor, bits):
int_tensor = torch.round(input_tensor).clamp(0, 2**bits - 1).to(torch.int64)
shifts = torch.arange(bits - 1, -1, -1, device=int_tensor.device)
binary_bits = (int_tensor.unsqueeze(-1) >> shifts) & 1
return binary_bits
class MyLut(torch.autograd.Function):
@staticmethod
def forward(ctx, input, weight):
batch = input.shape[0]
count = input.shape[1]
bits = input.shape[2]
assert int(math.log2(weight.shape[-1])) == bits
index = 2 ** torch.arange(bits - 1, -1, -1, device=input.device)
x = (input > 0).long()
x = x * index
ind = x.sum(dim=-1)
row_indices = torch.arange(count).unsqueeze(0).expand(batch, -1)
output = weight[row_indices, ind]
ctx.save_for_backward(input, weight, ind)
return output
@staticmethod
def backward(ctx, grad_output):
input, weight, ind = ctx.saved_tensors
grad_input = grad_weight = None
batch = input.shape[0]
count = input.shape[1]
bits = input.shape[2]
if ctx.needs_input_grad[1]:
grad_weight = torch.zeros_like(weight)
ind_p = ind.permute(1, 0)
grad_output_p = grad_output.permute(1, 0)
grad_weight.scatter_add_(1, ind_p, grad_output_p)
if ctx.needs_input_grad[0]:
row_indices = torch.arange(count).unsqueeze(0).expand(batch, -1)
grad_input = grad_output * weight[row_indices, ind]
grad_input = grad_input.unsqueeze(-1).repeat(1, 1, bits)
return grad_input, grad_weight
class SimpleCNN(nn.Module):
def __init__(self):
super(SimpleCNN, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.bn = nn.BatchNorm1d(320 * 4)
self.fc1 = nn.Linear(160, 50)
self.fc2 = nn.Linear(50, 10)
self.pool = nn.MaxPool2d(2)
self.relu = nn.ReLU()
self.weight = nn.Parameter(torch.randn(160, pow(2, 8)))
def forward(self, x):
x = self.relu(self.pool(self.conv1(x)))
x = self.relu((self.conv2(x)))
x = x.view(-1, 320 * 4)
x = self.bn(x)
x = x.view(-1, 160, 8)
x = MyLut.apply(x, self.weight)
x = self.relu(self.fc1(x))
x = self.fc2(x)
return x
class Lut(nn.Module):
def __init__(self, bits):
super(Lut, self).__init__()
self.weight = nn.Parameter(torch.randn(pow(2, bits)))
self.bias = nn.Parameter(torch.randn(pow(2, bits)))
self.index = torch.pow(2, torch.arange(bits))
self.bits = bits
def forward(self, x):
x = MyLut.apply(x, self.weight, self.bias)
# tmp = torch.where(x > 0, torch.ones_like(x), torch.zeros_like(x))
# x = tmp + x - x.detach()
xx = (x > 0).float()
x = xx + (x - x.detach())
# print(xx.requires_grad)
# print(xx.grad_fn)
x = x * (self.index.to(x.device))
x = torch.sum(x, dim=-1)
w = torch.gather(self.weight, 0, x.long())
b = torch.gather(self.weight, 0, x.long())
x = w * x + b
# tmp = torch.where(x > 0, torch.ones_like(x), torch.zeros_like(x))
# x = tmp + x - x.detach()
xx = (x > 0).float()
x = xx + (x - x.detach())
x = x.view(-1, 1)
return x
class LutGroup(nn.Module):
def __init__(self, bits, subbits):
super(LutGroup, self).__init__()
assert (bits % subbits) == 0
self.lutlist = nn.ModuleList([Lut(subbits) for _ in range(int(bits / subbits))])
self.bits = bits
self.subbits = subbits
def forward(self, x):
ll = len(self.lutlist)
tmp = torch.empty((x.shape[0], 0), dtype=x.dtype, device=x.device)
start = 0
end = self.subbits
for i in range(ll):
tx = self.lutlist[i](x[:, start:end])
tmp = torch.cat((tmp, tx), dim=1)
start += self.subbits
end += self.subbits
return tmp
class LutParallel(nn.Module):
def __init__(self, bits, number):
super(LutParallel, self).__init__()
self.lutlist = nn.ModuleList([Lut(bits) for _ in range(number)])
self.bits = bits
self.number = number
def forward(self, x):
tmp = torch.empty((x.shape[0], 0), dtype=x.dtype, device=x.device)
for i in range(self.number):
tx = self.lutlist[i](x)
tmp = torch.cat((tmp, tx), dim=1)
return tmp
class SimpleBNN(nn.Module):
def __init__(self):
super(SimpleCNN, self).__init__()
self.w = nn.Parameter(torch.randn(3, 784 * 8))
self.b = nn.Parameter(torch.zeros(3, 784 * 8))
self.lut1 = LutGroup(784 * 8, 8)
self.lut2 = LutGroup(784, 8)
self.lut3 = LutGroup(98, 14)
self.lut4 = LutParallel(7, 10)
def forward(self, x):
batch = x.shape[0]
x = x.view(batch, -1)
# 变换x [-0.5:0.5] 到 0-255然后按照二进制展开成8个值
x = (x * 256 + 128).clamp(0, 255).to(torch.uint8)
xx = torch.arange(8).to(x.device)
bits = (x.unsqueeze(-1) >> xx) & 1
bits = bits.view(batch, -1)
x = bits
# q = x * self.w[0] + self.b[0]
# k = x * self.w[1] + self.b[1]
# v = x * self.w[2] + self.b[2]
# q = q.view(batch, -1, 1)
# k = k.view(batch, 1, -1)
# v = v.view(batch, -1, 1)
# kq = q @ k
# kqv = kq @ v
# kqv = kqv.view(batch, -1)
kqv = x
x = self.lut1(kqv)
x = self.lut2(x)
x = self.lut3(x)
x = self.lut4(x)
return x
torch.autograd.set_detect_anomaly(True)
model = SimpleCNN().to(device)
# model = SimpleBNN().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
# output = output * 1.0
# output = F.softmax(output, dim=1)
# print(output.requires_grad)
# print(output.grad_fn)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print(
f"Train Epoch: {epoch} [{batch_idx * len(data)}/{len(train_loader.dataset)} "
f"({100. * batch_idx / len(train_loader):.0f}%)]\tLoss: {loss.item():.6f}"
)
def test():
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += criterion(output, target).item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
accuracy = 100.0 * correct / len(test_loader.dataset)
print(
f"\nTest set: Average loss: {test_loss:.4f}, Accuracy: {correct}/{len(test_loader.dataset)} "
f"({accuracy:.0f}%)\n"
)
for epoch in range(1, 30):
train(epoch)
test()
# torch.save(model.state_dict(), "mnist_cnn.pth")
print("Model saved to mnist_cnn.pth")