Add qwen files.
This commit is contained in:
		
							parent
							
								
									3a4e99f7e3
								
							
						
					
					
						commit
						9b90c607e0
					
				| 
						 | 
				
			
			@ -0,0 +1,37 @@
 | 
			
		|||
{
 | 
			
		||||
  "architectures": [
 | 
			
		||||
    "QWenLMHeadModel"
 | 
			
		||||
  ],
 | 
			
		||||
  "auto_map": {
 | 
			
		||||
    "AutoConfig": "configuration_qwen.QWenConfig",
 | 
			
		||||
    "AutoModelForCausalLM": "modeling_qwen.QWenLMHeadModel"
 | 
			
		||||
  },
 | 
			
		||||
  "attn_dropout_prob": 0.0,
 | 
			
		||||
  "bf16": false,
 | 
			
		||||
  "emb_dropout_prob": 0.0,
 | 
			
		||||
  "fp16": false,
 | 
			
		||||
  "fp32": false,
 | 
			
		||||
  "hidden_size": 2048,
 | 
			
		||||
  "intermediate_size": 11008,
 | 
			
		||||
  "initializer_range": 0.02,
 | 
			
		||||
  "kv_channels": 128,
 | 
			
		||||
  "layer_norm_epsilon": 1e-06,
 | 
			
		||||
  "max_position_embeddings": 8192,
 | 
			
		||||
  "model_type": "qwen",
 | 
			
		||||
  "no_bias": true,
 | 
			
		||||
  "num_attention_heads": 16,
 | 
			
		||||
  "num_hidden_layers": 24,
 | 
			
		||||
  "onnx_safe": null,
 | 
			
		||||
  "rotary_emb_base": 10000,
 | 
			
		||||
  "rotary_pct": 1.0,
 | 
			
		||||
  "scale_attn_weights": true,
 | 
			
		||||
  "seq_length": 8192,
 | 
			
		||||
  "tie_word_embeddings": false,
 | 
			
		||||
  "tokenizer_class": "QWenTokenizer",
 | 
			
		||||
  "transformers_version": "4.32.0",
 | 
			
		||||
  "use_cache": true,
 | 
			
		||||
  "use_dynamic_ntk": true,
 | 
			
		||||
  "use_flash_attn": "auto",
 | 
			
		||||
  "use_logn_attn": true,
 | 
			
		||||
  "vocab_size": 151936
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,5 @@
 | 
			
		|||
{
 | 
			
		||||
    "framework": "pytorch",
 | 
			
		||||
    "task": "chat",
 | 
			
		||||
    "allow_remote": true
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,71 @@
 | 
			
		|||
# Copyright (c) Alibaba Cloud.
 | 
			
		||||
#
 | 
			
		||||
# This source code is licensed under the license found in the
 | 
			
		||||
# LICENSE file in the root directory of this source tree.
 | 
			
		||||
 | 
			
		||||
from transformers import PretrainedConfig
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class QWenConfig(PretrainedConfig):
 | 
			
		||||
    model_type = "qwen"
 | 
			
		||||
    keys_to_ignore_at_inference = ["past_key_values"]
 | 
			
		||||
 | 
			
		||||
    def __init__(
 | 
			
		||||
        self,
 | 
			
		||||
        vocab_size=151936,
 | 
			
		||||
        hidden_size=4096,
 | 
			
		||||
        num_hidden_layers=32,
 | 
			
		||||
        num_attention_heads=32,
 | 
			
		||||
        emb_dropout_prob=0.0,
 | 
			
		||||
        attn_dropout_prob=0.0,
 | 
			
		||||
        layer_norm_epsilon=1e-6,
 | 
			
		||||
        initializer_range=0.02,
 | 
			
		||||
        max_position_embeddings=8192,
 | 
			
		||||
        scale_attn_weights=True,
 | 
			
		||||
        use_cache=True,
 | 
			
		||||
        bf16=False,
 | 
			
		||||
        fp16=False,
 | 
			
		||||
        fp32=False,
 | 
			
		||||
        kv_channels=128,
 | 
			
		||||
        rotary_pct=1.0,
 | 
			
		||||
        rotary_emb_base=10000,
 | 
			
		||||
        use_dynamic_ntk=True,
 | 
			
		||||
        use_logn_attn=True,
 | 
			
		||||
        use_flash_attn="auto",
 | 
			
		||||
        intermediate_size=22016,
 | 
			
		||||
        no_bias=True,
 | 
			
		||||
        tie_word_embeddings=False,
 | 
			
		||||
        use_cache_quantization=False,
 | 
			
		||||
        use_cache_kernel=False,
 | 
			
		||||
        softmax_in_fp32=False,
 | 
			
		||||
        **kwargs,
 | 
			
		||||
    ):
 | 
			
		||||
        self.vocab_size = vocab_size
 | 
			
		||||
        self.hidden_size = hidden_size
 | 
			
		||||
        self.intermediate_size = intermediate_size
 | 
			
		||||
        self.num_hidden_layers = num_hidden_layers
 | 
			
		||||
        self.num_attention_heads = num_attention_heads
 | 
			
		||||
        self.emb_dropout_prob = emb_dropout_prob
 | 
			
		||||
        self.attn_dropout_prob = attn_dropout_prob
 | 
			
		||||
        self.layer_norm_epsilon = layer_norm_epsilon
 | 
			
		||||
        self.initializer_range = initializer_range
 | 
			
		||||
        self.scale_attn_weights = scale_attn_weights
 | 
			
		||||
        self.use_cache = use_cache
 | 
			
		||||
        self.max_position_embeddings = max_position_embeddings
 | 
			
		||||
        self.bf16 = bf16
 | 
			
		||||
        self.fp16 = fp16
 | 
			
		||||
        self.fp32 = fp32
 | 
			
		||||
        self.kv_channels = kv_channels
 | 
			
		||||
        self.rotary_pct = rotary_pct
 | 
			
		||||
        self.rotary_emb_base = rotary_emb_base
 | 
			
		||||
        self.use_dynamic_ntk = use_dynamic_ntk
 | 
			
		||||
        self.use_logn_attn = use_logn_attn
 | 
			
		||||
        self.use_flash_attn = use_flash_attn
 | 
			
		||||
        self.no_bias = no_bias
 | 
			
		||||
        self.use_cache_quantization = use_cache_quantization
 | 
			
		||||
        self.use_cache_kernel = use_cache_kernel
 | 
			
		||||
        self.softmax_in_fp32 = softmax_in_fp32
 | 
			
		||||
        super().__init__(
 | 
			
		||||
            tie_word_embeddings=tie_word_embeddings,
 | 
			
		||||
            **kwargs
 | 
			
		||||
        )
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,55 @@
 | 
			
		|||
from torch.utils import cpp_extension
 | 
			
		||||
import pathlib
 | 
			
		||||
import os
 | 
			
		||||
import subprocess
 | 
			
		||||
 | 
			
		||||
def _get_cuda_bare_metal_version(cuda_dir):
 | 
			
		||||
    raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"],
 | 
			
		||||
                                         universal_newlines=True)
 | 
			
		||||
    output = raw_output.split()
 | 
			
		||||
    release_idx = output.index("release") + 1
 | 
			
		||||
    release = output[release_idx].split(".")
 | 
			
		||||
    bare_metal_major = release[0]
 | 
			
		||||
    bare_metal_minor = release[1][0]
 | 
			
		||||
 | 
			
		||||
    return raw_output, bare_metal_major, bare_metal_minor
 | 
			
		||||
 | 
			
		||||
def _create_build_dir(buildpath):
 | 
			
		||||
    try:
 | 
			
		||||
        os.mkdir(buildpath)
 | 
			
		||||
    except OSError:
 | 
			
		||||
        if not os.path.isdir(buildpath):
 | 
			
		||||
            print(f"Creation of the build directory {buildpath} failed")
 | 
			
		||||
 | 
			
		||||
# Check if cuda 11 is installed for compute capability 8.0
 | 
			
		||||
cc_flag = []
 | 
			
		||||
_, bare_metal_major, bare_metal_minor = _get_cuda_bare_metal_version(cpp_extension.CUDA_HOME)
 | 
			
		||||
if int(bare_metal_major) >= 11:
 | 
			
		||||
    cc_flag.append('-gencode')
 | 
			
		||||
    cc_flag.append('arch=compute_80,code=sm_80')
 | 
			
		||||
    if int(bare_metal_minor) >= 7:
 | 
			
		||||
        cc_flag.append('-gencode')
 | 
			
		||||
        cc_flag.append('arch=compute_90,code=sm_90')
 | 
			
		||||
 | 
			
		||||
# Build path
 | 
			
		||||
srcpath = pathlib.Path(__file__).parent.absolute()
 | 
			
		||||
buildpath = srcpath / 'build'
 | 
			
		||||
_create_build_dir(buildpath)
 | 
			
		||||
 | 
			
		||||
def _cpp_extention_load_helper(name, sources, extra_cuda_flags):
 | 
			
		||||
    return cpp_extension.load(
 | 
			
		||||
        name=name,
 | 
			
		||||
        sources=sources,
 | 
			
		||||
        build_directory=buildpath,
 | 
			
		||||
        extra_cflags=['-O3', ],
 | 
			
		||||
        extra_cuda_cflags=['-O3',
 | 
			
		||||
                           '-gencode', 'arch=compute_70,code=sm_70',
 | 
			
		||||
                           '--use_fast_math'] + extra_cuda_flags + cc_flag,
 | 
			
		||||
        verbose=1
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
extra_flags = []
 | 
			
		||||
 | 
			
		||||
cache_autogptq_cuda_256_sources = ["./cache_autogptq_cuda_256.cpp",
 | 
			
		||||
           "./cache_autogptq_cuda_kernel_256.cu"]
 | 
			
		||||
cache_autogptq_cuda_256 = _cpp_extention_load_helper("cache_autogptq_cuda_256", cache_autogptq_cuda_256_sources, extra_flags)
 | 
			
		||||
							
								
								
									
										21
									
								
								qwen/demo.py
								
								
								
								
							
							
						
						
									
										21
									
								
								qwen/demo.py
								
								
								
								
							| 
						 | 
				
			
			@ -1,11 +1,30 @@
 | 
			
		|||
 | 
			
		||||
import torch
 | 
			
		||||
from modelscope import snapshot_download
 | 
			
		||||
from transformers import AutoModelForCausalLM, AutoTokenizer
 | 
			
		||||
from transformers.generation import GenerationConfig
 | 
			
		||||
from transformers import AutoConfig
 | 
			
		||||
 | 
			
		||||
from modeling_qwen import QWenLMHeadModel
 | 
			
		||||
 | 
			
		||||
seed = 4321
 | 
			
		||||
torch.manual_seed(seed)
 | 
			
		||||
torch.cuda.manual_seed_all(seed)
 | 
			
		||||
 | 
			
		||||
model_dir = snapshot_download("qwen/Qwen-1_8B-Chat")
 | 
			
		||||
 | 
			
		||||
config, kwargs = AutoConfig.from_pretrained(
 | 
			
		||||
    model_dir,
 | 
			
		||||
    return_unused_kwargs=True,
 | 
			
		||||
    trust_remote_code=True,
 | 
			
		||||
    code_revision=None,
 | 
			
		||||
    _commit_hash=None,
 | 
			
		||||
)
 | 
			
		||||
model = QWenLMHeadModel(config)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
 | 
			
		||||
model = AutoModelForCausalLM.from_pretrained(
 | 
			
		||||
model = model.from_pretrained(
 | 
			
		||||
    model_dir, device_map="auto", trust_remote_code=True
 | 
			
		||||
).eval()
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -0,0 +1,12 @@
 | 
			
		|||
{
 | 
			
		||||
  "chat_format": "chatml",
 | 
			
		||||
  "eos_token_id": 151643,
 | 
			
		||||
  "pad_token_id": 151643,
 | 
			
		||||
  "max_window_size": 6144,
 | 
			
		||||
  "max_new_tokens": 512,
 | 
			
		||||
  "do_sample": true,
 | 
			
		||||
  "top_k": 0,
 | 
			
		||||
  "top_p": 0.8,
 | 
			
		||||
  "repetition_penalty": 1.1,
 | 
			
		||||
  "transformers_version": "4.31.0"
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,202 @@
 | 
			
		|||
{
 | 
			
		||||
  "metadata": {
 | 
			
		||||
    "total_size": 3673657344
 | 
			
		||||
  },
 | 
			
		||||
  "weight_map": {
 | 
			
		||||
    "lm_head.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.0.attn.c_attn.bias": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.0.attn.c_attn.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.0.attn.c_proj.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.0.ln_1.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.0.ln_2.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.0.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.0.mlp.w1.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.0.mlp.w2.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.1.attn.c_attn.bias": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.1.attn.c_attn.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.1.attn.c_proj.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.1.ln_1.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.1.ln_2.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.1.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.1.mlp.w1.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.1.mlp.w2.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.10.attn.c_attn.bias": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.10.attn.c_attn.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.10.attn.c_proj.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.10.ln_1.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.10.ln_2.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.10.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.10.mlp.w1.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.10.mlp.w2.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.11.attn.c_attn.bias": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.11.attn.c_attn.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.11.attn.c_proj.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.11.ln_1.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.11.ln_2.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.11.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.11.mlp.w1.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.11.mlp.w2.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.12.attn.c_attn.bias": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.12.attn.c_attn.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.12.attn.c_proj.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.12.ln_1.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.12.ln_2.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.12.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.12.mlp.w1.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.12.mlp.w2.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.13.attn.c_attn.bias": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.13.attn.c_attn.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.13.attn.c_proj.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.13.ln_1.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.13.ln_2.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.13.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.13.mlp.w1.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.13.mlp.w2.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.14.attn.c_attn.bias": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.14.attn.c_attn.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.14.attn.c_proj.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.14.ln_1.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.14.ln_2.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.14.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.14.mlp.w1.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.14.mlp.w2.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.15.attn.c_attn.bias": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.15.attn.c_attn.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.15.attn.c_proj.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.15.ln_1.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.15.ln_2.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.15.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.15.mlp.w1.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.15.mlp.w2.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.16.attn.c_attn.bias": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.16.attn.c_attn.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.16.attn.c_proj.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.16.ln_1.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.16.ln_2.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.16.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.16.mlp.w1.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.16.mlp.w2.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.17.attn.c_attn.bias": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.17.attn.c_attn.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.17.attn.c_proj.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.17.ln_1.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.17.ln_2.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.17.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.17.mlp.w1.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.17.mlp.w2.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.18.attn.c_attn.bias": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.18.attn.c_attn.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.18.attn.c_proj.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.18.ln_1.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.18.ln_2.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.18.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.18.mlp.w1.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.18.mlp.w2.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.19.attn.c_attn.bias": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.19.attn.c_attn.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.19.attn.c_proj.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.19.ln_1.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.19.ln_2.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.19.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.19.mlp.w1.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.19.mlp.w2.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.2.attn.c_attn.bias": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.2.attn.c_attn.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.2.attn.c_proj.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.2.ln_1.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.2.ln_2.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.2.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.2.mlp.w1.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.2.mlp.w2.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.20.attn.c_attn.bias": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.20.attn.c_attn.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.20.attn.c_proj.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.20.ln_1.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.20.ln_2.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.20.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.20.mlp.w1.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.20.mlp.w2.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.21.attn.c_attn.bias": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.21.attn.c_attn.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.21.attn.c_proj.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.21.ln_1.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.21.ln_2.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.21.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.21.mlp.w1.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.21.mlp.w2.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.22.attn.c_attn.bias": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.22.attn.c_attn.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.22.attn.c_proj.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.22.ln_1.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.22.ln_2.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.22.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.22.mlp.w1.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.22.mlp.w2.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.23.attn.c_attn.bias": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.23.attn.c_attn.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.23.attn.c_proj.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.23.ln_1.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.23.ln_2.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.23.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.23.mlp.w1.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.23.mlp.w2.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.3.attn.c_attn.bias": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.3.attn.c_attn.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.3.attn.c_proj.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.3.ln_1.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.3.ln_2.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.3.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.3.mlp.w1.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.3.mlp.w2.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.4.attn.c_attn.bias": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.4.attn.c_attn.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.4.attn.c_proj.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.4.ln_1.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.4.ln_2.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.4.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.4.mlp.w1.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.4.mlp.w2.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.5.attn.c_attn.bias": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.5.attn.c_attn.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.5.attn.c_proj.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.5.ln_1.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.5.ln_2.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.5.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.5.mlp.w1.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.5.mlp.w2.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.6.attn.c_attn.bias": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.6.attn.c_attn.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.6.attn.c_proj.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.6.ln_1.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.6.ln_2.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.6.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.6.mlp.w1.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.6.mlp.w2.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.7.attn.c_attn.bias": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.7.attn.c_attn.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.7.attn.c_proj.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.7.ln_1.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.7.ln_2.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.7.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.7.mlp.w1.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.7.mlp.w2.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.8.attn.c_attn.bias": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.8.attn.c_attn.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.8.attn.c_proj.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.8.ln_1.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.8.ln_2.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.8.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.8.mlp.w1.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.8.mlp.w2.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.9.attn.c_attn.bias": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.9.attn.c_attn.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.9.attn.c_proj.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.9.ln_1.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.9.ln_2.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.9.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.9.mlp.w1.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.h.9.mlp.w2.weight": "model-00001-of-00002.safetensors",
 | 
			
		||||
    "transformer.ln_f.weight": "model-00002-of-00002.safetensors",
 | 
			
		||||
    "transformer.wte.weight": "model-00001-of-00002.safetensors"
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -40,8 +40,8 @@ SUPPORT_FP16 = SUPPORT_CUDA and torch.cuda.get_device_capability(0)[0] >= 7
 | 
			
		|||
SUPPORT_TORCH2 = hasattr(torch, '__version__') and int(torch.__version__.split(".")[0]) >= 2
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
from .configuration_qwen import QWenConfig
 | 
			
		||||
from .qwen_generation_utils import (
 | 
			
		||||
from configuration_qwen import QWenConfig
 | 
			
		||||
from qwen_generation_utils import (
 | 
			
		||||
    HistoryType,
 | 
			
		||||
    make_context,
 | 
			
		||||
    decode_tokens,
 | 
			
		||||
| 
						 | 
				
			
			@ -520,7 +520,9 @@ class QWenAttention(nn.Module):
 | 
			
		|||
 | 
			
		||||
            if not self.use_cache_quantization and SUPPORT_TORCH2:
 | 
			
		||||
                if attention_mask is not None:
 | 
			
		||||
                    attention_mask = attention_mask.expand(-1, -1, query.size(2), -1)
 | 
			
		||||
                    attention_mask = attention_mask.expand(
 | 
			
		||||
                        -1, -1, causal_mask.size(2), -1
 | 
			
		||||
                    )
 | 
			
		||||
                    if causal_mask is not None:
 | 
			
		||||
                        attention_mask = attention_mask.masked_fill(~causal_mask, torch.finfo(query.dtype).min)
 | 
			
		||||
                else:
 | 
			
		||||
| 
						 | 
				
			
			@ -1328,14 +1330,14 @@ def apply_rotary_pos_emb(t, freqs):
 | 
			
		|||
      t (tensor(batch_size, seq_len, n_head, head_dim)):
 | 
			
		||||
        the input embedding/hidden states
 | 
			
		||||
      freqs (list[tensor(1, seq_len, 1, rotary_dim), tensor(1, seq_len, 1, rotary_dim)]):
 | 
			
		||||
        the cached cos/sin position embeddings
 | 
			
		||||
        the cached cos/sin position embeddings 
 | 
			
		||||
    """
 | 
			
		||||
    rot_dim = freqs[0].shape[-1]
 | 
			
		||||
    cos, sin = freqs
 | 
			
		||||
    t_float = t.float()
 | 
			
		||||
    if apply_rotary_emb_func is not None and t.is_cuda:
 | 
			
		||||
        # apply_rotary_emb in flash_attn requires cos/sin to be of
 | 
			
		||||
        # shape (seqlen, rotary_dim / 2) and apply rotary embedding
 | 
			
		||||
        # apply_rotary_emb in flash_attn requires cos/sin to be of 
 | 
			
		||||
        # shape (seqlen, rotary_dim / 2) and apply rotary embedding 
 | 
			
		||||
        # to the first rotary_dim of the input
 | 
			
		||||
        cos = cos.squeeze(0).squeeze(1)[:, : rot_dim // 2]
 | 
			
		||||
        sin = sin.squeeze(0).squeeze(1)[:, : rot_dim // 2]
 | 
			
		||||
| 
						 | 
				
			
			@ -1360,4 +1362,4 @@ class RMSNorm(torch.nn.Module):
 | 
			
		|||
            return rms_norm(x, self.weight, self.eps)
 | 
			
		||||
        else:
 | 
			
		||||
            output = self._norm(x.float()).type_as(x)
 | 
			
		||||
            return output * self.weight
 | 
			
		||||
            return output * self.weight
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -0,0 +1,416 @@
 | 
			
		|||
# Copyright (c) Alibaba Cloud.
 | 
			
		||||
#
 | 
			
		||||
# This source code is licensed under the license found in the
 | 
			
		||||
# LICENSE file in the root directory of this source tree.
 | 
			
		||||
 | 
			
		||||
"""Generation support."""
 | 
			
		||||
 | 
			
		||||
from typing import Tuple, List, Union, Iterable
 | 
			
		||||
 | 
			
		||||
import numpy as np
 | 
			
		||||
import torch
 | 
			
		||||
import torch.nn.functional as F
 | 
			
		||||
from transformers import PreTrainedTokenizer
 | 
			
		||||
from transformers import logging
 | 
			
		||||
from transformers.generation import LogitsProcessor
 | 
			
		||||
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
# Types.
 | 
			
		||||
HistoryType = List[Tuple[str, str]]
 | 
			
		||||
TokensType = List[int]
 | 
			
		||||
BatchTokensType = List[List[int]]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def pad_batch(batch: BatchTokensType, pad_id: int, seq_length: int) -> BatchTokensType:
 | 
			
		||||
    for tokens in batch:
 | 
			
		||||
        context_length = len(tokens)
 | 
			
		||||
        if context_length < seq_length:
 | 
			
		||||
            tokens.extend([pad_id] * (seq_length - context_length))
 | 
			
		||||
    return batch
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def get_ltor_masks_and_position_ids(
 | 
			
		||||
    data,
 | 
			
		||||
    eod_token,
 | 
			
		||||
    reset_position_ids,
 | 
			
		||||
    reset_attention_mask,
 | 
			
		||||
    eod_mask_loss,
 | 
			
		||||
):
 | 
			
		||||
    """Build masks and position id for left to right model."""
 | 
			
		||||
 | 
			
		||||
    # Extract batch size and sequence length.
 | 
			
		||||
    micro_batch_size, seq_length = data.size()
 | 
			
		||||
 | 
			
		||||
    # Attention mask (lower triangular).
 | 
			
		||||
    if reset_attention_mask:
 | 
			
		||||
        att_mask_batch = micro_batch_size
 | 
			
		||||
    else:
 | 
			
		||||
        att_mask_batch = 1
 | 
			
		||||
    attention_mask = torch.tril(
 | 
			
		||||
        torch.ones((att_mask_batch, seq_length, seq_length), device=data.device)
 | 
			
		||||
    ).view(att_mask_batch, 1, seq_length, seq_length)
 | 
			
		||||
 | 
			
		||||
    # Loss mask.
 | 
			
		||||
    loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device)
 | 
			
		||||
    if eod_mask_loss:
 | 
			
		||||
        loss_mask[data == eod_token] = 0.0
 | 
			
		||||
 | 
			
		||||
    # Position ids.
 | 
			
		||||
    position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device)
 | 
			
		||||
    position_ids = position_ids.unsqueeze(0).expand_as(data)
 | 
			
		||||
    # We need to clone as the ids will be modifed based on batch index.
 | 
			
		||||
    if reset_position_ids:
 | 
			
		||||
        position_ids = position_ids.clone()
 | 
			
		||||
 | 
			
		||||
    if reset_position_ids or reset_attention_mask:
 | 
			
		||||
        # Loop through the batches:
 | 
			
		||||
        for b in range(micro_batch_size):
 | 
			
		||||
 | 
			
		||||
            # Find indecies where EOD token is.
 | 
			
		||||
            eod_index = position_ids[b, data[b] == eod_token]
 | 
			
		||||
            # Detach indecies from positions if going to modify positions.
 | 
			
		||||
            if reset_position_ids:
 | 
			
		||||
                eod_index = eod_index.clone()
 | 
			
		||||
 | 
			
		||||
            # Loop through EOD indecies:
 | 
			
		||||
            prev_index = 0
 | 
			
		||||
            for j in range(eod_index.size()[0]):
 | 
			
		||||
                i = eod_index[j]
 | 
			
		||||
                # Mask attention loss.
 | 
			
		||||
                if reset_attention_mask:
 | 
			
		||||
                    attention_mask[b, 0, (i + 1) :, : (i + 1)] = 0
 | 
			
		||||
                # Reset positions.
 | 
			
		||||
                if reset_position_ids:
 | 
			
		||||
                    position_ids[b, (i + 1) :] -= i + 1 - prev_index
 | 
			
		||||
                    prev_index = i + 1
 | 
			
		||||
 | 
			
		||||
    # Convert attention mask to binary:
 | 
			
		||||
    attention_mask = attention_mask < 0.5
 | 
			
		||||
 | 
			
		||||
    return attention_mask, loss_mask, position_ids
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def get_batch(context_tokens: torch.LongTensor, eod_id: int):
 | 
			
		||||
    """Generate batch from context tokens."""
 | 
			
		||||
    # Move to GPU.
 | 
			
		||||
    tokens = context_tokens.contiguous().to(context_tokens.device)
 | 
			
		||||
    # Get the attention mask and postition ids.
 | 
			
		||||
    attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
 | 
			
		||||
        tokens,
 | 
			
		||||
        eod_id,
 | 
			
		||||
        reset_position_ids=False,
 | 
			
		||||
        reset_attention_mask=False,
 | 
			
		||||
        eod_mask_loss=False,
 | 
			
		||||
    )
 | 
			
		||||
    return tokens, attention_mask, position_ids
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def get_stop_words_ids(chat_format, tokenizer):
 | 
			
		||||
    if chat_format == "raw":
 | 
			
		||||
        stop_words_ids = [tokenizer.encode("Human:"), [tokenizer.eod_id]]
 | 
			
		||||
    elif chat_format == "chatml":
 | 
			
		||||
        stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id]]
 | 
			
		||||
    else:
 | 
			
		||||
        raise NotImplementedError(f"Unknown chat format {chat_format!r}")
 | 
			
		||||
    return stop_words_ids
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def make_context(
 | 
			
		||||
    tokenizer: PreTrainedTokenizer,
 | 
			
		||||
    query: str,
 | 
			
		||||
    history: List[Tuple[str, str]] = None,
 | 
			
		||||
    system: str = "",
 | 
			
		||||
    max_window_size: int = 6144,
 | 
			
		||||
    chat_format: str = "chatml",
 | 
			
		||||
):
 | 
			
		||||
    if history is None:
 | 
			
		||||
        history = []
 | 
			
		||||
 | 
			
		||||
    if chat_format == "chatml":
 | 
			
		||||
        im_start, im_end = "<|im_start|>", "<|im_end|>"
 | 
			
		||||
        im_start_tokens = [tokenizer.im_start_id]
 | 
			
		||||
        im_end_tokens = [tokenizer.im_end_id]
 | 
			
		||||
        nl_tokens = tokenizer.encode("\n")
 | 
			
		||||
 | 
			
		||||
        def _tokenize_str(role, content):
 | 
			
		||||
            return f"{role}\n{content}", tokenizer.encode(
 | 
			
		||||
                role, allowed_special=set()
 | 
			
		||||
            ) + nl_tokens + tokenizer.encode(content, allowed_special=set())
 | 
			
		||||
 | 
			
		||||
        system_text, system_tokens_part = _tokenize_str("system", system)
 | 
			
		||||
        system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
 | 
			
		||||
 | 
			
		||||
        raw_text = ""
 | 
			
		||||
        context_tokens = []
 | 
			
		||||
 | 
			
		||||
        for turn_query, turn_response in reversed(history):
 | 
			
		||||
            query_text, query_tokens_part = _tokenize_str("user", turn_query)
 | 
			
		||||
            query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
 | 
			
		||||
            response_text, response_tokens_part = _tokenize_str(
 | 
			
		||||
                "assistant", turn_response
 | 
			
		||||
            )
 | 
			
		||||
            response_tokens = im_start_tokens + response_tokens_part + im_end_tokens
 | 
			
		||||
 | 
			
		||||
            next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens
 | 
			
		||||
            prev_chat = (
 | 
			
		||||
                f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
            current_context_size = (
 | 
			
		||||
                len(system_tokens) + len(next_context_tokens) + len(context_tokens)
 | 
			
		||||
            )
 | 
			
		||||
            if current_context_size < max_window_size:
 | 
			
		||||
                context_tokens = next_context_tokens + context_tokens
 | 
			
		||||
                raw_text = prev_chat + raw_text
 | 
			
		||||
            else:
 | 
			
		||||
                break
 | 
			
		||||
 | 
			
		||||
        context_tokens = system_tokens + context_tokens
 | 
			
		||||
        raw_text = f"{im_start}{system_text}{im_end}" + raw_text
 | 
			
		||||
        context_tokens += (
 | 
			
		||||
            nl_tokens
 | 
			
		||||
            + im_start_tokens
 | 
			
		||||
            + _tokenize_str("user", query)[1]
 | 
			
		||||
            + im_end_tokens
 | 
			
		||||
            + nl_tokens
 | 
			
		||||
            + im_start_tokens
 | 
			
		||||
            + tokenizer.encode("assistant")
 | 
			
		||||
            + nl_tokens
 | 
			
		||||
        )
 | 
			
		||||
        raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n"
 | 
			
		||||
 | 
			
		||||
    elif chat_format == "raw":
 | 
			
		||||
        raw_text = query
 | 
			
		||||
        context_tokens = tokenizer.encode(raw_text)
 | 
			
		||||
    else:
 | 
			
		||||
        raise NotImplementedError(f"Unknown chat format {chat_format!r}")
 | 
			
		||||
 | 
			
		||||
    return raw_text, context_tokens
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _decode_default(
 | 
			
		||||
    tokens: List[int],
 | 
			
		||||
    *,
 | 
			
		||||
    stop_words: List[str],
 | 
			
		||||
    eod_words: List[str],
 | 
			
		||||
    tokenizer: PreTrainedTokenizer,
 | 
			
		||||
    raw_text_len: int,
 | 
			
		||||
    verbose: bool = False,
 | 
			
		||||
    return_end_reason: bool = False,
 | 
			
		||||
    errors: str='replace',
 | 
			
		||||
):
 | 
			
		||||
    trim_decode_tokens = tokenizer.decode(tokens, errors=errors)[raw_text_len:]
 | 
			
		||||
    if verbose:
 | 
			
		||||
        print("\nRaw Generate: ", trim_decode_tokens)
 | 
			
		||||
 | 
			
		||||
    end_reason = f"Gen length {len(tokens)}"
 | 
			
		||||
    for stop_word in stop_words:
 | 
			
		||||
        trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
 | 
			
		||||
    for eod_word in eod_words:
 | 
			
		||||
        if eod_word in trim_decode_tokens:
 | 
			
		||||
            end_reason = f"Gen {eod_word!r}"
 | 
			
		||||
        trim_decode_tokens = trim_decode_tokens.split(eod_word)[0]
 | 
			
		||||
    trim_decode_tokens = trim_decode_tokens.strip()
 | 
			
		||||
    if verbose:
 | 
			
		||||
        print("\nEnd Reason:", end_reason)
 | 
			
		||||
        print("\nGenerate: ", trim_decode_tokens)
 | 
			
		||||
 | 
			
		||||
    if return_end_reason:
 | 
			
		||||
        return trim_decode_tokens, end_reason
 | 
			
		||||
    else:
 | 
			
		||||
        return trim_decode_tokens
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _decode_chatml(
 | 
			
		||||
    tokens: List[int],
 | 
			
		||||
    *,
 | 
			
		||||
    stop_words: List[str],
 | 
			
		||||
    eod_token_ids: List[int],
 | 
			
		||||
    tokenizer: PreTrainedTokenizer,
 | 
			
		||||
    raw_text_len: int,
 | 
			
		||||
    context_length: int,
 | 
			
		||||
    verbose: bool = False,
 | 
			
		||||
    return_end_reason: bool = False,
 | 
			
		||||
    errors: str='replace'
 | 
			
		||||
):
 | 
			
		||||
    end_reason = f"Gen length {len(tokens)}"
 | 
			
		||||
    eod_token_idx = context_length
 | 
			
		||||
    for eod_token_idx in range(context_length, len(tokens)):
 | 
			
		||||
        if tokens[eod_token_idx] in eod_token_ids:
 | 
			
		||||
            end_reason = f"Gen {tokenizer.decode([tokens[eod_token_idx]])!r}"
 | 
			
		||||
            break
 | 
			
		||||
 | 
			
		||||
    trim_decode_tokens = tokenizer.decode(tokens[:eod_token_idx], errors=errors)[raw_text_len:]
 | 
			
		||||
    if verbose:
 | 
			
		||||
        print("\nRaw Generate w/o EOD:", tokenizer.decode(tokens, errors=errors)[raw_text_len:])
 | 
			
		||||
        print("\nRaw Generate:", trim_decode_tokens)
 | 
			
		||||
        print("\nEnd Reason:", end_reason)
 | 
			
		||||
    for stop_word in stop_words:
 | 
			
		||||
        trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
 | 
			
		||||
    trim_decode_tokens = trim_decode_tokens.strip()
 | 
			
		||||
    if verbose:
 | 
			
		||||
        print("\nGenerate:", trim_decode_tokens)
 | 
			
		||||
 | 
			
		||||
    if return_end_reason:
 | 
			
		||||
        return trim_decode_tokens, end_reason
 | 
			
		||||
    else:
 | 
			
		||||
        return trim_decode_tokens
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def decode_tokens(
 | 
			
		||||
    tokens: Union[torch.LongTensor, TokensType],
 | 
			
		||||
    tokenizer: PreTrainedTokenizer,
 | 
			
		||||
    raw_text_len: int,
 | 
			
		||||
    context_length: int,
 | 
			
		||||
    chat_format: str,
 | 
			
		||||
    verbose: bool = False,
 | 
			
		||||
    return_end_reason: bool = False,
 | 
			
		||||
    errors: str="replace",
 | 
			
		||||
) -> str:
 | 
			
		||||
    if torch.is_tensor(tokens):
 | 
			
		||||
        tokens = tokens.cpu().numpy().tolist()
 | 
			
		||||
 | 
			
		||||
    if chat_format == "chatml":
 | 
			
		||||
        return _decode_chatml(
 | 
			
		||||
            tokens,
 | 
			
		||||
            stop_words=[],
 | 
			
		||||
            eod_token_ids=[tokenizer.im_start_id, tokenizer.im_end_id],
 | 
			
		||||
            tokenizer=tokenizer,
 | 
			
		||||
            raw_text_len=raw_text_len,
 | 
			
		||||
            context_length=context_length,
 | 
			
		||||
            verbose=verbose,
 | 
			
		||||
            return_end_reason=return_end_reason,
 | 
			
		||||
            errors=errors,
 | 
			
		||||
        )
 | 
			
		||||
    elif chat_format == "raw":
 | 
			
		||||
        return _decode_default(
 | 
			
		||||
            tokens,
 | 
			
		||||
            stop_words=["<|endoftext|>"],
 | 
			
		||||
            eod_words=["<|endoftext|>"],
 | 
			
		||||
            tokenizer=tokenizer,
 | 
			
		||||
            raw_text_len=raw_text_len,
 | 
			
		||||
            verbose=verbose,
 | 
			
		||||
            return_end_reason=return_end_reason,
 | 
			
		||||
            errors=errors,
 | 
			
		||||
        )
 | 
			
		||||
    else:
 | 
			
		||||
        raise NotImplementedError(f"Unknown chat format {chat_format!r}")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class StopWordsLogitsProcessor(LogitsProcessor):
 | 
			
		||||
    """
 | 
			
		||||
    :class:`transformers.LogitsProcessor` that enforces that when specified sequences appear, stop geration.
 | 
			
		||||
 | 
			
		||||
    Args:
 | 
			
		||||
        stop_words_ids (:obj:`List[List[int]]`):
 | 
			
		||||
            List of list of token ids of stop ids. In order to get the tokens of the words
 | 
			
		||||
            that should not appear in the generated text, use :obj:`tokenizer(bad_word,
 | 
			
		||||
            add_prefix_space=True).input_ids`.
 | 
			
		||||
        eos_token_id (:obj:`int`):
 | 
			
		||||
            The id of the `end-of-sequence` token.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    def __init__(self, stop_words_ids: Iterable[Iterable[int]], eos_token_id: int):
 | 
			
		||||
 | 
			
		||||
        if not isinstance(stop_words_ids, List) or len(stop_words_ids) == 0:
 | 
			
		||||
            raise ValueError(
 | 
			
		||||
                f"`stop_words_ids` has to be a non-emtpy list, but is {stop_words_ids}."
 | 
			
		||||
            )
 | 
			
		||||
        if any(not isinstance(bad_word_ids, list) for bad_word_ids in stop_words_ids):
 | 
			
		||||
            raise ValueError(
 | 
			
		||||
                f"`stop_words_ids` has to be a list of lists, but is {stop_words_ids}."
 | 
			
		||||
            )
 | 
			
		||||
        if any(
 | 
			
		||||
            any(
 | 
			
		||||
                (not isinstance(token_id, (int, np.integer)) or token_id < 0)
 | 
			
		||||
                for token_id in stop_word_ids
 | 
			
		||||
            )
 | 
			
		||||
            for stop_word_ids in stop_words_ids
 | 
			
		||||
        ):
 | 
			
		||||
            raise ValueError(
 | 
			
		||||
                f"Each list in `stop_words_ids` has to be a list of positive integers, but is {stop_words_ids}."
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        self.stop_words_ids = list(
 | 
			
		||||
            filter(
 | 
			
		||||
                lambda bad_token_seq: bad_token_seq != [eos_token_id], stop_words_ids
 | 
			
		||||
            )
 | 
			
		||||
        )
 | 
			
		||||
        self.eos_token_id = eos_token_id
 | 
			
		||||
        for stop_token_seq in self.stop_words_ids:
 | 
			
		||||
            assert (
 | 
			
		||||
                len(stop_token_seq) > 0
 | 
			
		||||
            ), "Stop words token sequences {} cannot have an empty list".format(
 | 
			
		||||
                stop_words_ids
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
    def __call__(
 | 
			
		||||
        self, input_ids: torch.LongTensor, scores: torch.FloatTensor
 | 
			
		||||
    ) -> torch.FloatTensor:
 | 
			
		||||
        stopped_samples = self._calc_stopped_samples(input_ids)
 | 
			
		||||
        for i, should_stop in enumerate(stopped_samples):
 | 
			
		||||
            if should_stop:
 | 
			
		||||
                scores[i, self.eos_token_id] = float(2**15)
 | 
			
		||||
        return scores
 | 
			
		||||
 | 
			
		||||
    def _tokens_match(self, prev_tokens: torch.LongTensor, tokens: List[int]) -> bool:
 | 
			
		||||
        if len(tokens) == 0:
 | 
			
		||||
            # if bad word tokens is just one token always ban it
 | 
			
		||||
            return True
 | 
			
		||||
        elif len(tokens) > len(prev_tokens):
 | 
			
		||||
            # if bad word tokens are longer then prev input_ids they can't be equal
 | 
			
		||||
            return False
 | 
			
		||||
        elif prev_tokens[-len(tokens) :].tolist() == tokens:
 | 
			
		||||
            # if tokens match
 | 
			
		||||
            return True
 | 
			
		||||
        else:
 | 
			
		||||
            return False
 | 
			
		||||
 | 
			
		||||
    def _calc_stopped_samples(self, prev_input_ids: Iterable[int]) -> Iterable[int]:
 | 
			
		||||
        stopped_samples = []
 | 
			
		||||
        for prev_input_ids_slice in prev_input_ids:
 | 
			
		||||
            match = False
 | 
			
		||||
            for stop_token_seq in self.stop_words_ids:
 | 
			
		||||
                if self._tokens_match(prev_input_ids_slice, stop_token_seq):
 | 
			
		||||
                    # if tokens do not match continue
 | 
			
		||||
                    match = True
 | 
			
		||||
                    break
 | 
			
		||||
            stopped_samples.append(match)
 | 
			
		||||
 | 
			
		||||
        return stopped_samples
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float("Inf")):
 | 
			
		||||
    """This function has been mostly taken from huggingface conversational
 | 
			
		||||
    ai code at
 | 
			
		||||
        https://medium.com/huggingface/how-to-build-a-state-of-the-art-
 | 
			
		||||
             conversational-ai-with-transfer-learning-2d818ac26313"""
 | 
			
		||||
 | 
			
		||||
    if top_k > 0:
 | 
			
		||||
        # Remove all tokens with a probability less than the
 | 
			
		||||
        # last token of the top-k
 | 
			
		||||
        indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
 | 
			
		||||
        logits[indices_to_remove] = filter_value
 | 
			
		||||
 | 
			
		||||
    if top_p > 0.0:
 | 
			
		||||
        # Cconvert to 1D
 | 
			
		||||
        sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
 | 
			
		||||
        cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
 | 
			
		||||
 | 
			
		||||
        # Remove tokens with cumulative probability above the threshold
 | 
			
		||||
        sorted_indices_to_remove = cumulative_probs > top_p
 | 
			
		||||
        # Shift the indices to the right to keep also the first token
 | 
			
		||||
        # above the threshold
 | 
			
		||||
        sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
 | 
			
		||||
        sorted_indices_to_remove[..., 0] = 0
 | 
			
		||||
        for i in range(sorted_indices.size(0)):
 | 
			
		||||
            indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
 | 
			
		||||
            logits[i][indices_to_remove] = filter_value
 | 
			
		||||
 | 
			
		||||
    return logits
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def switch(val1, val2, boolean):
 | 
			
		||||
    boolean = boolean.type_as(val1)
 | 
			
		||||
    return (1 - boolean) * val1 + boolean * val2
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,276 @@
 | 
			
		|||
# Copyright (c) Alibaba Cloud.
 | 
			
		||||
#
 | 
			
		||||
# This source code is licensed under the license found in the
 | 
			
		||||
# LICENSE file in the root directory of this source tree.
 | 
			
		||||
 | 
			
		||||
"""Tokenization classes for QWen."""
 | 
			
		||||
 | 
			
		||||
import base64
 | 
			
		||||
import logging
 | 
			
		||||
import os
 | 
			
		||||
import unicodedata
 | 
			
		||||
from typing import Collection, Dict, List, Set, Tuple, Union
 | 
			
		||||
 | 
			
		||||
import tiktoken
 | 
			
		||||
from transformers import PreTrainedTokenizer, AddedToken
 | 
			
		||||
 | 
			
		||||
logger = logging.getLogger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
 | 
			
		||||
 | 
			
		||||
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
 | 
			
		||||
ENDOFTEXT = "<|endoftext|>"
 | 
			
		||||
IMSTART = "<|im_start|>"
 | 
			
		||||
IMEND = "<|im_end|>"
 | 
			
		||||
# as the default behavior is changed to allow special tokens in
 | 
			
		||||
# regular texts, the surface forms of special tokens need to be
 | 
			
		||||
# as different as possible to minimize the impact
 | 
			
		||||
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
 | 
			
		||||
# changed to use actual index to avoid misconfiguration with vocabulary expansion
 | 
			
		||||
SPECIAL_START_ID = 151643
 | 
			
		||||
SPECIAL_TOKENS = tuple(
 | 
			
		||||
    enumerate(
 | 
			
		||||
        (
 | 
			
		||||
            (
 | 
			
		||||
                ENDOFTEXT,
 | 
			
		||||
                IMSTART,
 | 
			
		||||
                IMEND,
 | 
			
		||||
            )
 | 
			
		||||
            + EXTRAS
 | 
			
		||||
        ),
 | 
			
		||||
        start=SPECIAL_START_ID,
 | 
			
		||||
    )
 | 
			
		||||
)
 | 
			
		||||
SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
 | 
			
		||||
    with open(tiktoken_bpe_file, "rb") as f:
 | 
			
		||||
        contents = f.read()
 | 
			
		||||
    return {
 | 
			
		||||
        base64.b64decode(token): int(rank)
 | 
			
		||||
        for token, rank in (line.split() for line in contents.splitlines() if line)
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class QWenTokenizer(PreTrainedTokenizer):
 | 
			
		||||
    """QWen tokenizer."""
 | 
			
		||||
 | 
			
		||||
    vocab_files_names = VOCAB_FILES_NAMES
 | 
			
		||||
 | 
			
		||||
    def __init__(
 | 
			
		||||
        self,
 | 
			
		||||
        vocab_file,
 | 
			
		||||
        errors="replace",
 | 
			
		||||
        extra_vocab_file=None,
 | 
			
		||||
        **kwargs,
 | 
			
		||||
    ):
 | 
			
		||||
        super().__init__(**kwargs)
 | 
			
		||||
 | 
			
		||||
        # how to handle errors in decoding UTF-8 byte sequences
 | 
			
		||||
        # use ignore if you are in streaming inference
 | 
			
		||||
        self.errors = errors  
 | 
			
		||||
 | 
			
		||||
        self.mergeable_ranks = _load_tiktoken_bpe(vocab_file)  # type: Dict[bytes, int]
 | 
			
		||||
        self.special_tokens = {
 | 
			
		||||
            token: index
 | 
			
		||||
            for index, token in SPECIAL_TOKENS
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        # try load extra vocab from file
 | 
			
		||||
        if extra_vocab_file is not None:
 | 
			
		||||
            used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values())
 | 
			
		||||
            extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file)
 | 
			
		||||
            for token, index in extra_mergeable_ranks.items():
 | 
			
		||||
                if token in self.mergeable_ranks:
 | 
			
		||||
                    logger.info(f"extra token {token} exists, skipping")
 | 
			
		||||
                    continue
 | 
			
		||||
                if index in used_ids:
 | 
			
		||||
                    logger.info(f'the index {index} for extra token {token} exists, skipping')
 | 
			
		||||
                    continue
 | 
			
		||||
                self.mergeable_ranks[token] = index
 | 
			
		||||
            # the index may be sparse after this, but don't worry tiktoken.Encoding will handle this
 | 
			
		||||
 | 
			
		||||
        enc = tiktoken.Encoding(
 | 
			
		||||
            "Qwen",
 | 
			
		||||
            pat_str=PAT_STR,
 | 
			
		||||
            mergeable_ranks=self.mergeable_ranks,
 | 
			
		||||
            special_tokens=self.special_tokens,
 | 
			
		||||
        )
 | 
			
		||||
        assert (
 | 
			
		||||
            len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
 | 
			
		||||
        ), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
 | 
			
		||||
 | 
			
		||||
        self.decoder = {
 | 
			
		||||
            v: k for k, v in self.mergeable_ranks.items()
 | 
			
		||||
        }  # type: dict[int, bytes|str]
 | 
			
		||||
        self.decoder.update({v: k for k, v in self.special_tokens.items()})
 | 
			
		||||
 | 
			
		||||
        self.tokenizer = enc  # type: tiktoken.Encoding
 | 
			
		||||
 | 
			
		||||
        self.eod_id = self.tokenizer.eot_token
 | 
			
		||||
        self.im_start_id = self.special_tokens[IMSTART]
 | 
			
		||||
        self.im_end_id = self.special_tokens[IMEND]
 | 
			
		||||
 | 
			
		||||
    def __getstate__(self):
 | 
			
		||||
        # for pickle lovers
 | 
			
		||||
        state = self.__dict__.copy()
 | 
			
		||||
        del state["tokenizer"]
 | 
			
		||||
        return state
 | 
			
		||||
 | 
			
		||||
    def __setstate__(self, state):
 | 
			
		||||
        # tokenizer is not python native; don't pass it; rebuild it
 | 
			
		||||
        self.__dict__.update(state)
 | 
			
		||||
        enc = tiktoken.Encoding(
 | 
			
		||||
            "Qwen",
 | 
			
		||||
            pat_str=PAT_STR,
 | 
			
		||||
            mergeable_ranks=self.mergeable_ranks,
 | 
			
		||||
            special_tokens=self.special_tokens,
 | 
			
		||||
        )
 | 
			
		||||
        self.tokenizer = enc
 | 
			
		||||
 | 
			
		||||
    def __len__(self) -> int:
 | 
			
		||||
        return self.tokenizer.n_vocab
 | 
			
		||||
 | 
			
		||||
    def get_vocab(self) -> Dict[bytes, int]:
 | 
			
		||||
        return self.mergeable_ranks
 | 
			
		||||
 | 
			
		||||
    def convert_tokens_to_ids(
 | 
			
		||||
        self, tokens: Union[bytes, str, List[Union[bytes, str]]]
 | 
			
		||||
    ) -> List[int]:
 | 
			
		||||
        ids = []
 | 
			
		||||
        if isinstance(tokens, (str, bytes)):
 | 
			
		||||
            if tokens in self.special_tokens:
 | 
			
		||||
                return self.special_tokens[tokens]
 | 
			
		||||
            else:
 | 
			
		||||
                return self.mergeable_ranks.get(tokens)
 | 
			
		||||
        for token in tokens:
 | 
			
		||||
            if token in self.special_tokens:
 | 
			
		||||
                ids.append(self.special_tokens[token])
 | 
			
		||||
            else:
 | 
			
		||||
                ids.append(self.mergeable_ranks.get(token))
 | 
			
		||||
        return ids
 | 
			
		||||
 | 
			
		||||
    def _add_tokens(
 | 
			
		||||
        self,
 | 
			
		||||
        new_tokens: Union[List[str], List[AddedToken]],
 | 
			
		||||
        special_tokens: bool = False,
 | 
			
		||||
    ) -> int:
 | 
			
		||||
        if not special_tokens and new_tokens:
 | 
			
		||||
            raise ValueError("Adding regular tokens is not supported")
 | 
			
		||||
        for token in new_tokens:
 | 
			
		||||
            surface_form = token.content if isinstance(token, AddedToken) else token
 | 
			
		||||
            if surface_form not in SPECIAL_TOKENS_SET:
 | 
			
		||||
                raise ValueError("Adding unknown special tokens is not supported")
 | 
			
		||||
        return 0
 | 
			
		||||
 | 
			
		||||
    def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
 | 
			
		||||
        """
 | 
			
		||||
        Save only the vocabulary of the tokenizer (vocabulary).
 | 
			
		||||
 | 
			
		||||
        Returns:
 | 
			
		||||
            `Tuple(str)`: Paths to the files saved.
 | 
			
		||||
        """
 | 
			
		||||
        file_path = os.path.join(save_directory, "qwen.tiktoken")
 | 
			
		||||
        with open(file_path, "w", encoding="utf8") as w:
 | 
			
		||||
            for k, v in self.mergeable_ranks.items():
 | 
			
		||||
                line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
 | 
			
		||||
                w.write(line)
 | 
			
		||||
        return (file_path,)
 | 
			
		||||
 | 
			
		||||
    def tokenize(
 | 
			
		||||
        self,
 | 
			
		||||
        text: str,
 | 
			
		||||
        allowed_special: Union[Set, str] = "all",
 | 
			
		||||
        disallowed_special: Union[Collection, str] = (),
 | 
			
		||||
        **kwargs,
 | 
			
		||||
    ) -> List[Union[bytes, str]]:
 | 
			
		||||
        """
 | 
			
		||||
        Converts a string in a sequence of tokens.
 | 
			
		||||
 | 
			
		||||
        Args:
 | 
			
		||||
            text (`str`):
 | 
			
		||||
                The sequence to be encoded.
 | 
			
		||||
            allowed_special (`Literal["all"]` or `set`):
 | 
			
		||||
                The surface forms of the tokens to be encoded as special tokens in regular texts.
 | 
			
		||||
                Default to "all".
 | 
			
		||||
            disallowed_special (`Literal["all"]` or `Collection`):
 | 
			
		||||
                The surface forms of the tokens that should not be in regular texts and trigger errors.
 | 
			
		||||
                Default to an empty tuple.
 | 
			
		||||
 | 
			
		||||
            kwargs (additional keyword arguments, *optional*):
 | 
			
		||||
                Will be passed to the underlying model specific encode method.
 | 
			
		||||
 | 
			
		||||
        Returns:
 | 
			
		||||
            `List[bytes|str]`: The list of tokens.
 | 
			
		||||
        """
 | 
			
		||||
        tokens = []
 | 
			
		||||
        text = unicodedata.normalize("NFC", text)
 | 
			
		||||
 | 
			
		||||
        # this implementation takes a detour: text -> token id -> token surface forms
 | 
			
		||||
        for t in self.tokenizer.encode(
 | 
			
		||||
            text, allowed_special=allowed_special, disallowed_special=disallowed_special
 | 
			
		||||
        ):
 | 
			
		||||
            tokens.append(self.decoder[t])
 | 
			
		||||
        return tokens
 | 
			
		||||
 | 
			
		||||
    def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
 | 
			
		||||
        """
 | 
			
		||||
        Converts a sequence of tokens in a single string.
 | 
			
		||||
        """
 | 
			
		||||
        text = ""
 | 
			
		||||
        temp = b""
 | 
			
		||||
        for t in tokens:
 | 
			
		||||
            if isinstance(t, str):
 | 
			
		||||
                if temp:
 | 
			
		||||
                    text += temp.decode("utf-8", errors=self.errors)
 | 
			
		||||
                    temp = b""
 | 
			
		||||
                text += t
 | 
			
		||||
            elif isinstance(t, bytes):
 | 
			
		||||
                temp += t
 | 
			
		||||
            else:
 | 
			
		||||
                raise TypeError("token should only be of type types or str")
 | 
			
		||||
        if temp:
 | 
			
		||||
            text += temp.decode("utf-8", errors=self.errors)
 | 
			
		||||
        return text
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def vocab_size(self):
 | 
			
		||||
        return self.tokenizer.n_vocab
 | 
			
		||||
 | 
			
		||||
    def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
 | 
			
		||||
        """Converts an id to a token, special tokens included"""
 | 
			
		||||
        if index in self.decoder:
 | 
			
		||||
            return self.decoder[index]
 | 
			
		||||
        raise ValueError("unknown ids")
 | 
			
		||||
 | 
			
		||||
    def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
 | 
			
		||||
        """Converts a token to an id using the vocab, special tokens included"""
 | 
			
		||||
        if token in self.special_tokens:
 | 
			
		||||
            return self.special_tokens[token]
 | 
			
		||||
        if token in self.mergeable_ranks:
 | 
			
		||||
            return self.mergeable_ranks[token]
 | 
			
		||||
        raise ValueError("unknown token")
 | 
			
		||||
 | 
			
		||||
    def _tokenize(self, text: str, **kwargs):
 | 
			
		||||
        """
 | 
			
		||||
        Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
 | 
			
		||||
        vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
 | 
			
		||||
 | 
			
		||||
        Do NOT take care of added tokens.
 | 
			
		||||
        """
 | 
			
		||||
        raise NotImplementedError
 | 
			
		||||
 | 
			
		||||
    def _decode(
 | 
			
		||||
        self,
 | 
			
		||||
        token_ids: Union[int, List[int]],
 | 
			
		||||
        skip_special_tokens: bool = False,
 | 
			
		||||
        errors: str = None,
 | 
			
		||||
        **kwargs,
 | 
			
		||||
    ) -> str:
 | 
			
		||||
        if isinstance(token_ids, int):
 | 
			
		||||
            token_ids = [token_ids]
 | 
			
		||||
        if skip_special_tokens:
 | 
			
		||||
            token_ids = [i for i in token_ids if i < self.eod_id]
 | 
			
		||||
        return self.tokenizer.decode(token_ids, errors=errors or self.errors)
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,10 @@
 | 
			
		|||
{
 | 
			
		||||
  "model_max_length": 8192,
 | 
			
		||||
  "tokenizer_class": "QWenTokenizer",
 | 
			
		||||
  "auto_map": {
 | 
			
		||||
    "AutoTokenizer": [
 | 
			
		||||
      "tokenization_qwen.QWenTokenizer",
 | 
			
		||||
      null
 | 
			
		||||
      ]
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
		Loading…
	
		Reference in New Issue