Add qwen files.
This commit is contained in:
parent
3a4e99f7e3
commit
9b90c607e0
|
@ -0,0 +1,37 @@
|
|||
{
|
||||
"architectures": [
|
||||
"QWenLMHeadModel"
|
||||
],
|
||||
"auto_map": {
|
||||
"AutoConfig": "configuration_qwen.QWenConfig",
|
||||
"AutoModelForCausalLM": "modeling_qwen.QWenLMHeadModel"
|
||||
},
|
||||
"attn_dropout_prob": 0.0,
|
||||
"bf16": false,
|
||||
"emb_dropout_prob": 0.0,
|
||||
"fp16": false,
|
||||
"fp32": false,
|
||||
"hidden_size": 2048,
|
||||
"intermediate_size": 11008,
|
||||
"initializer_range": 0.02,
|
||||
"kv_channels": 128,
|
||||
"layer_norm_epsilon": 1e-06,
|
||||
"max_position_embeddings": 8192,
|
||||
"model_type": "qwen",
|
||||
"no_bias": true,
|
||||
"num_attention_heads": 16,
|
||||
"num_hidden_layers": 24,
|
||||
"onnx_safe": null,
|
||||
"rotary_emb_base": 10000,
|
||||
"rotary_pct": 1.0,
|
||||
"scale_attn_weights": true,
|
||||
"seq_length": 8192,
|
||||
"tie_word_embeddings": false,
|
||||
"tokenizer_class": "QWenTokenizer",
|
||||
"transformers_version": "4.32.0",
|
||||
"use_cache": true,
|
||||
"use_dynamic_ntk": true,
|
||||
"use_flash_attn": "auto",
|
||||
"use_logn_attn": true,
|
||||
"vocab_size": 151936
|
||||
}
|
|
@ -0,0 +1,5 @@
|
|||
{
|
||||
"framework": "pytorch",
|
||||
"task": "chat",
|
||||
"allow_remote": true
|
||||
}
|
|
@ -0,0 +1,71 @@
|
|||
# Copyright (c) Alibaba Cloud.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
from transformers import PretrainedConfig
|
||||
|
||||
|
||||
class QWenConfig(PretrainedConfig):
|
||||
model_type = "qwen"
|
||||
keys_to_ignore_at_inference = ["past_key_values"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=151936,
|
||||
hidden_size=4096,
|
||||
num_hidden_layers=32,
|
||||
num_attention_heads=32,
|
||||
emb_dropout_prob=0.0,
|
||||
attn_dropout_prob=0.0,
|
||||
layer_norm_epsilon=1e-6,
|
||||
initializer_range=0.02,
|
||||
max_position_embeddings=8192,
|
||||
scale_attn_weights=True,
|
||||
use_cache=True,
|
||||
bf16=False,
|
||||
fp16=False,
|
||||
fp32=False,
|
||||
kv_channels=128,
|
||||
rotary_pct=1.0,
|
||||
rotary_emb_base=10000,
|
||||
use_dynamic_ntk=True,
|
||||
use_logn_attn=True,
|
||||
use_flash_attn="auto",
|
||||
intermediate_size=22016,
|
||||
no_bias=True,
|
||||
tie_word_embeddings=False,
|
||||
use_cache_quantization=False,
|
||||
use_cache_kernel=False,
|
||||
softmax_in_fp32=False,
|
||||
**kwargs,
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.hidden_size = hidden_size
|
||||
self.intermediate_size = intermediate_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.emb_dropout_prob = emb_dropout_prob
|
||||
self.attn_dropout_prob = attn_dropout_prob
|
||||
self.layer_norm_epsilon = layer_norm_epsilon
|
||||
self.initializer_range = initializer_range
|
||||
self.scale_attn_weights = scale_attn_weights
|
||||
self.use_cache = use_cache
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.bf16 = bf16
|
||||
self.fp16 = fp16
|
||||
self.fp32 = fp32
|
||||
self.kv_channels = kv_channels
|
||||
self.rotary_pct = rotary_pct
|
||||
self.rotary_emb_base = rotary_emb_base
|
||||
self.use_dynamic_ntk = use_dynamic_ntk
|
||||
self.use_logn_attn = use_logn_attn
|
||||
self.use_flash_attn = use_flash_attn
|
||||
self.no_bias = no_bias
|
||||
self.use_cache_quantization = use_cache_quantization
|
||||
self.use_cache_kernel = use_cache_kernel
|
||||
self.softmax_in_fp32 = softmax_in_fp32
|
||||
super().__init__(
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs
|
||||
)
|
|
@ -0,0 +1,55 @@
|
|||
from torch.utils import cpp_extension
|
||||
import pathlib
|
||||
import os
|
||||
import subprocess
|
||||
|
||||
def _get_cuda_bare_metal_version(cuda_dir):
|
||||
raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"],
|
||||
universal_newlines=True)
|
||||
output = raw_output.split()
|
||||
release_idx = output.index("release") + 1
|
||||
release = output[release_idx].split(".")
|
||||
bare_metal_major = release[0]
|
||||
bare_metal_minor = release[1][0]
|
||||
|
||||
return raw_output, bare_metal_major, bare_metal_minor
|
||||
|
||||
def _create_build_dir(buildpath):
|
||||
try:
|
||||
os.mkdir(buildpath)
|
||||
except OSError:
|
||||
if not os.path.isdir(buildpath):
|
||||
print(f"Creation of the build directory {buildpath} failed")
|
||||
|
||||
# Check if cuda 11 is installed for compute capability 8.0
|
||||
cc_flag = []
|
||||
_, bare_metal_major, bare_metal_minor = _get_cuda_bare_metal_version(cpp_extension.CUDA_HOME)
|
||||
if int(bare_metal_major) >= 11:
|
||||
cc_flag.append('-gencode')
|
||||
cc_flag.append('arch=compute_80,code=sm_80')
|
||||
if int(bare_metal_minor) >= 7:
|
||||
cc_flag.append('-gencode')
|
||||
cc_flag.append('arch=compute_90,code=sm_90')
|
||||
|
||||
# Build path
|
||||
srcpath = pathlib.Path(__file__).parent.absolute()
|
||||
buildpath = srcpath / 'build'
|
||||
_create_build_dir(buildpath)
|
||||
|
||||
def _cpp_extention_load_helper(name, sources, extra_cuda_flags):
|
||||
return cpp_extension.load(
|
||||
name=name,
|
||||
sources=sources,
|
||||
build_directory=buildpath,
|
||||
extra_cflags=['-O3', ],
|
||||
extra_cuda_cflags=['-O3',
|
||||
'-gencode', 'arch=compute_70,code=sm_70',
|
||||
'--use_fast_math'] + extra_cuda_flags + cc_flag,
|
||||
verbose=1
|
||||
)
|
||||
|
||||
extra_flags = []
|
||||
|
||||
cache_autogptq_cuda_256_sources = ["./cache_autogptq_cuda_256.cpp",
|
||||
"./cache_autogptq_cuda_kernel_256.cu"]
|
||||
cache_autogptq_cuda_256 = _cpp_extention_load_helper("cache_autogptq_cuda_256", cache_autogptq_cuda_256_sources, extra_flags)
|
21
qwen/demo.py
21
qwen/demo.py
|
@ -1,11 +1,30 @@
|
|||
|
||||
import torch
|
||||
from modelscope import snapshot_download
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
from transformers.generation import GenerationConfig
|
||||
from transformers import AutoConfig
|
||||
|
||||
from modeling_qwen import QWenLMHeadModel
|
||||
|
||||
seed = 4321
|
||||
torch.manual_seed(seed)
|
||||
torch.cuda.manual_seed_all(seed)
|
||||
|
||||
model_dir = snapshot_download("qwen/Qwen-1_8B-Chat")
|
||||
|
||||
config, kwargs = AutoConfig.from_pretrained(
|
||||
model_dir,
|
||||
return_unused_kwargs=True,
|
||||
trust_remote_code=True,
|
||||
code_revision=None,
|
||||
_commit_hash=None,
|
||||
)
|
||||
model = QWenLMHeadModel(config)
|
||||
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model = model.from_pretrained(
|
||||
model_dir, device_map="auto", trust_remote_code=True
|
||||
).eval()
|
||||
|
||||
|
|
|
@ -0,0 +1,12 @@
|
|||
{
|
||||
"chat_format": "chatml",
|
||||
"eos_token_id": 151643,
|
||||
"pad_token_id": 151643,
|
||||
"max_window_size": 6144,
|
||||
"max_new_tokens": 512,
|
||||
"do_sample": true,
|
||||
"top_k": 0,
|
||||
"top_p": 0.8,
|
||||
"repetition_penalty": 1.1,
|
||||
"transformers_version": "4.31.0"
|
||||
}
|
|
@ -0,0 +1,202 @@
|
|||
{
|
||||
"metadata": {
|
||||
"total_size": 3673657344
|
||||
},
|
||||
"weight_map": {
|
||||
"lm_head.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.0.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.0.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.0.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.0.ln_1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.0.ln_2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.0.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.0.mlp.w1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.0.mlp.w2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.1.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.1.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.1.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.1.ln_1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.1.ln_2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.1.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.1.mlp.w1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.1.mlp.w2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.10.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.10.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.10.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.10.ln_1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.10.ln_2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.10.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.10.mlp.w1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.10.mlp.w2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.11.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.11.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.11.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.11.ln_1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.11.ln_2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.11.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.11.mlp.w1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.11.mlp.w2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.12.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.12.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.12.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.12.ln_1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.12.ln_2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.12.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.12.mlp.w1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.12.mlp.w2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.13.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.13.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.13.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.13.ln_1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.13.ln_2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.13.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.13.mlp.w1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.13.mlp.w2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.14.attn.c_attn.bias": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.14.attn.c_attn.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.14.attn.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.14.ln_1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.14.ln_2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.14.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.14.mlp.w1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.14.mlp.w2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.15.attn.c_attn.bias": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.15.attn.c_attn.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.15.attn.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.15.ln_1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.15.ln_2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.15.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.15.mlp.w1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.15.mlp.w2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.16.attn.c_attn.bias": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.16.attn.c_attn.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.16.attn.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.16.ln_1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.16.ln_2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.16.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.16.mlp.w1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.16.mlp.w2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.17.attn.c_attn.bias": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.17.attn.c_attn.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.17.attn.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.17.ln_1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.17.ln_2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.17.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.17.mlp.w1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.17.mlp.w2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.18.attn.c_attn.bias": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.18.attn.c_attn.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.18.attn.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.18.ln_1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.18.ln_2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.18.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.18.mlp.w1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.18.mlp.w2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.19.attn.c_attn.bias": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.19.attn.c_attn.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.19.attn.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.19.ln_1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.19.ln_2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.19.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.19.mlp.w1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.19.mlp.w2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.2.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.2.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.2.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.2.ln_1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.2.ln_2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.2.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.2.mlp.w1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.2.mlp.w2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.20.attn.c_attn.bias": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.20.attn.c_attn.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.20.attn.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.20.ln_1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.20.ln_2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.20.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.20.mlp.w1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.20.mlp.w2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.21.attn.c_attn.bias": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.21.attn.c_attn.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.21.attn.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.21.ln_1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.21.ln_2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.21.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.21.mlp.w1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.21.mlp.w2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.22.attn.c_attn.bias": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.22.attn.c_attn.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.22.attn.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.22.ln_1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.22.ln_2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.22.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.22.mlp.w1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.22.mlp.w2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.23.attn.c_attn.bias": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.23.attn.c_attn.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.23.attn.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.23.ln_1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.23.ln_2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.23.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.23.mlp.w1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.23.mlp.w2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.3.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.3.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.3.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.3.ln_1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.3.ln_2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.3.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.3.mlp.w1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.3.mlp.w2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.4.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.4.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.4.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.4.ln_1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.4.ln_2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.4.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.4.mlp.w1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.4.mlp.w2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.5.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.5.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.5.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.5.ln_1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.5.ln_2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.5.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.5.mlp.w1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.5.mlp.w2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.6.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.6.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.6.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.6.ln_1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.6.ln_2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.6.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.6.mlp.w1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.6.mlp.w2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.7.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.7.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.7.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.7.ln_1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.7.ln_2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.7.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.7.mlp.w1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.7.mlp.w2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.8.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.8.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.8.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.8.ln_1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.8.ln_2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.8.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.8.mlp.w1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.8.mlp.w2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.9.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.9.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.9.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.9.ln_1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.9.ln_2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.9.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.9.mlp.w1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.9.mlp.w2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.ln_f.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.wte.weight": "model-00001-of-00002.safetensors"
|
||||
}
|
||||
}
|
|
@ -40,8 +40,8 @@ SUPPORT_FP16 = SUPPORT_CUDA and torch.cuda.get_device_capability(0)[0] >= 7
|
|||
SUPPORT_TORCH2 = hasattr(torch, '__version__') and int(torch.__version__.split(".")[0]) >= 2
|
||||
|
||||
|
||||
from .configuration_qwen import QWenConfig
|
||||
from .qwen_generation_utils import (
|
||||
from configuration_qwen import QWenConfig
|
||||
from qwen_generation_utils import (
|
||||
HistoryType,
|
||||
make_context,
|
||||
decode_tokens,
|
||||
|
@ -520,7 +520,9 @@ class QWenAttention(nn.Module):
|
|||
|
||||
if not self.use_cache_quantization and SUPPORT_TORCH2:
|
||||
if attention_mask is not None:
|
||||
attention_mask = attention_mask.expand(-1, -1, query.size(2), -1)
|
||||
attention_mask = attention_mask.expand(
|
||||
-1, -1, causal_mask.size(2), -1
|
||||
)
|
||||
if causal_mask is not None:
|
||||
attention_mask = attention_mask.masked_fill(~causal_mask, torch.finfo(query.dtype).min)
|
||||
else:
|
||||
|
@ -1328,14 +1330,14 @@ def apply_rotary_pos_emb(t, freqs):
|
|||
t (tensor(batch_size, seq_len, n_head, head_dim)):
|
||||
the input embedding/hidden states
|
||||
freqs (list[tensor(1, seq_len, 1, rotary_dim), tensor(1, seq_len, 1, rotary_dim)]):
|
||||
the cached cos/sin position embeddings
|
||||
the cached cos/sin position embeddings
|
||||
"""
|
||||
rot_dim = freqs[0].shape[-1]
|
||||
cos, sin = freqs
|
||||
t_float = t.float()
|
||||
if apply_rotary_emb_func is not None and t.is_cuda:
|
||||
# apply_rotary_emb in flash_attn requires cos/sin to be of
|
||||
# shape (seqlen, rotary_dim / 2) and apply rotary embedding
|
||||
# apply_rotary_emb in flash_attn requires cos/sin to be of
|
||||
# shape (seqlen, rotary_dim / 2) and apply rotary embedding
|
||||
# to the first rotary_dim of the input
|
||||
cos = cos.squeeze(0).squeeze(1)[:, : rot_dim // 2]
|
||||
sin = sin.squeeze(0).squeeze(1)[:, : rot_dim // 2]
|
||||
|
@ -1360,4 +1362,4 @@ class RMSNorm(torch.nn.Module):
|
|||
return rms_norm(x, self.weight, self.eps)
|
||||
else:
|
||||
output = self._norm(x.float()).type_as(x)
|
||||
return output * self.weight
|
||||
return output * self.weight
|
||||
|
|
|
@ -0,0 +1,416 @@
|
|||
# Copyright (c) Alibaba Cloud.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
"""Generation support."""
|
||||
|
||||
from typing import Tuple, List, Union, Iterable
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from transformers import PreTrainedTokenizer
|
||||
from transformers import logging
|
||||
from transformers.generation import LogitsProcessor
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
# Types.
|
||||
HistoryType = List[Tuple[str, str]]
|
||||
TokensType = List[int]
|
||||
BatchTokensType = List[List[int]]
|
||||
|
||||
|
||||
def pad_batch(batch: BatchTokensType, pad_id: int, seq_length: int) -> BatchTokensType:
|
||||
for tokens in batch:
|
||||
context_length = len(tokens)
|
||||
if context_length < seq_length:
|
||||
tokens.extend([pad_id] * (seq_length - context_length))
|
||||
return batch
|
||||
|
||||
|
||||
def get_ltor_masks_and_position_ids(
|
||||
data,
|
||||
eod_token,
|
||||
reset_position_ids,
|
||||
reset_attention_mask,
|
||||
eod_mask_loss,
|
||||
):
|
||||
"""Build masks and position id for left to right model."""
|
||||
|
||||
# Extract batch size and sequence length.
|
||||
micro_batch_size, seq_length = data.size()
|
||||
|
||||
# Attention mask (lower triangular).
|
||||
if reset_attention_mask:
|
||||
att_mask_batch = micro_batch_size
|
||||
else:
|
||||
att_mask_batch = 1
|
||||
attention_mask = torch.tril(
|
||||
torch.ones((att_mask_batch, seq_length, seq_length), device=data.device)
|
||||
).view(att_mask_batch, 1, seq_length, seq_length)
|
||||
|
||||
# Loss mask.
|
||||
loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device)
|
||||
if eod_mask_loss:
|
||||
loss_mask[data == eod_token] = 0.0
|
||||
|
||||
# Position ids.
|
||||
position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device)
|
||||
position_ids = position_ids.unsqueeze(0).expand_as(data)
|
||||
# We need to clone as the ids will be modifed based on batch index.
|
||||
if reset_position_ids:
|
||||
position_ids = position_ids.clone()
|
||||
|
||||
if reset_position_ids or reset_attention_mask:
|
||||
# Loop through the batches:
|
||||
for b in range(micro_batch_size):
|
||||
|
||||
# Find indecies where EOD token is.
|
||||
eod_index = position_ids[b, data[b] == eod_token]
|
||||
# Detach indecies from positions if going to modify positions.
|
||||
if reset_position_ids:
|
||||
eod_index = eod_index.clone()
|
||||
|
||||
# Loop through EOD indecies:
|
||||
prev_index = 0
|
||||
for j in range(eod_index.size()[0]):
|
||||
i = eod_index[j]
|
||||
# Mask attention loss.
|
||||
if reset_attention_mask:
|
||||
attention_mask[b, 0, (i + 1) :, : (i + 1)] = 0
|
||||
# Reset positions.
|
||||
if reset_position_ids:
|
||||
position_ids[b, (i + 1) :] -= i + 1 - prev_index
|
||||
prev_index = i + 1
|
||||
|
||||
# Convert attention mask to binary:
|
||||
attention_mask = attention_mask < 0.5
|
||||
|
||||
return attention_mask, loss_mask, position_ids
|
||||
|
||||
|
||||
def get_batch(context_tokens: torch.LongTensor, eod_id: int):
|
||||
"""Generate batch from context tokens."""
|
||||
# Move to GPU.
|
||||
tokens = context_tokens.contiguous().to(context_tokens.device)
|
||||
# Get the attention mask and postition ids.
|
||||
attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
|
||||
tokens,
|
||||
eod_id,
|
||||
reset_position_ids=False,
|
||||
reset_attention_mask=False,
|
||||
eod_mask_loss=False,
|
||||
)
|
||||
return tokens, attention_mask, position_ids
|
||||
|
||||
|
||||
def get_stop_words_ids(chat_format, tokenizer):
|
||||
if chat_format == "raw":
|
||||
stop_words_ids = [tokenizer.encode("Human:"), [tokenizer.eod_id]]
|
||||
elif chat_format == "chatml":
|
||||
stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id]]
|
||||
else:
|
||||
raise NotImplementedError(f"Unknown chat format {chat_format!r}")
|
||||
return stop_words_ids
|
||||
|
||||
|
||||
def make_context(
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
query: str,
|
||||
history: List[Tuple[str, str]] = None,
|
||||
system: str = "",
|
||||
max_window_size: int = 6144,
|
||||
chat_format: str = "chatml",
|
||||
):
|
||||
if history is None:
|
||||
history = []
|
||||
|
||||
if chat_format == "chatml":
|
||||
im_start, im_end = "<|im_start|>", "<|im_end|>"
|
||||
im_start_tokens = [tokenizer.im_start_id]
|
||||
im_end_tokens = [tokenizer.im_end_id]
|
||||
nl_tokens = tokenizer.encode("\n")
|
||||
|
||||
def _tokenize_str(role, content):
|
||||
return f"{role}\n{content}", tokenizer.encode(
|
||||
role, allowed_special=set()
|
||||
) + nl_tokens + tokenizer.encode(content, allowed_special=set())
|
||||
|
||||
system_text, system_tokens_part = _tokenize_str("system", system)
|
||||
system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
|
||||
|
||||
raw_text = ""
|
||||
context_tokens = []
|
||||
|
||||
for turn_query, turn_response in reversed(history):
|
||||
query_text, query_tokens_part = _tokenize_str("user", turn_query)
|
||||
query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
|
||||
response_text, response_tokens_part = _tokenize_str(
|
||||
"assistant", turn_response
|
||||
)
|
||||
response_tokens = im_start_tokens + response_tokens_part + im_end_tokens
|
||||
|
||||
next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens
|
||||
prev_chat = (
|
||||
f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
|
||||
)
|
||||
|
||||
current_context_size = (
|
||||
len(system_tokens) + len(next_context_tokens) + len(context_tokens)
|
||||
)
|
||||
if current_context_size < max_window_size:
|
||||
context_tokens = next_context_tokens + context_tokens
|
||||
raw_text = prev_chat + raw_text
|
||||
else:
|
||||
break
|
||||
|
||||
context_tokens = system_tokens + context_tokens
|
||||
raw_text = f"{im_start}{system_text}{im_end}" + raw_text
|
||||
context_tokens += (
|
||||
nl_tokens
|
||||
+ im_start_tokens
|
||||
+ _tokenize_str("user", query)[1]
|
||||
+ im_end_tokens
|
||||
+ nl_tokens
|
||||
+ im_start_tokens
|
||||
+ tokenizer.encode("assistant")
|
||||
+ nl_tokens
|
||||
)
|
||||
raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n"
|
||||
|
||||
elif chat_format == "raw":
|
||||
raw_text = query
|
||||
context_tokens = tokenizer.encode(raw_text)
|
||||
else:
|
||||
raise NotImplementedError(f"Unknown chat format {chat_format!r}")
|
||||
|
||||
return raw_text, context_tokens
|
||||
|
||||
|
||||
def _decode_default(
|
||||
tokens: List[int],
|
||||
*,
|
||||
stop_words: List[str],
|
||||
eod_words: List[str],
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
raw_text_len: int,
|
||||
verbose: bool = False,
|
||||
return_end_reason: bool = False,
|
||||
errors: str='replace',
|
||||
):
|
||||
trim_decode_tokens = tokenizer.decode(tokens, errors=errors)[raw_text_len:]
|
||||
if verbose:
|
||||
print("\nRaw Generate: ", trim_decode_tokens)
|
||||
|
||||
end_reason = f"Gen length {len(tokens)}"
|
||||
for stop_word in stop_words:
|
||||
trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
|
||||
for eod_word in eod_words:
|
||||
if eod_word in trim_decode_tokens:
|
||||
end_reason = f"Gen {eod_word!r}"
|
||||
trim_decode_tokens = trim_decode_tokens.split(eod_word)[0]
|
||||
trim_decode_tokens = trim_decode_tokens.strip()
|
||||
if verbose:
|
||||
print("\nEnd Reason:", end_reason)
|
||||
print("\nGenerate: ", trim_decode_tokens)
|
||||
|
||||
if return_end_reason:
|
||||
return trim_decode_tokens, end_reason
|
||||
else:
|
||||
return trim_decode_tokens
|
||||
|
||||
|
||||
def _decode_chatml(
|
||||
tokens: List[int],
|
||||
*,
|
||||
stop_words: List[str],
|
||||
eod_token_ids: List[int],
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
raw_text_len: int,
|
||||
context_length: int,
|
||||
verbose: bool = False,
|
||||
return_end_reason: bool = False,
|
||||
errors: str='replace'
|
||||
):
|
||||
end_reason = f"Gen length {len(tokens)}"
|
||||
eod_token_idx = context_length
|
||||
for eod_token_idx in range(context_length, len(tokens)):
|
||||
if tokens[eod_token_idx] in eod_token_ids:
|
||||
end_reason = f"Gen {tokenizer.decode([tokens[eod_token_idx]])!r}"
|
||||
break
|
||||
|
||||
trim_decode_tokens = tokenizer.decode(tokens[:eod_token_idx], errors=errors)[raw_text_len:]
|
||||
if verbose:
|
||||
print("\nRaw Generate w/o EOD:", tokenizer.decode(tokens, errors=errors)[raw_text_len:])
|
||||
print("\nRaw Generate:", trim_decode_tokens)
|
||||
print("\nEnd Reason:", end_reason)
|
||||
for stop_word in stop_words:
|
||||
trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
|
||||
trim_decode_tokens = trim_decode_tokens.strip()
|
||||
if verbose:
|
||||
print("\nGenerate:", trim_decode_tokens)
|
||||
|
||||
if return_end_reason:
|
||||
return trim_decode_tokens, end_reason
|
||||
else:
|
||||
return trim_decode_tokens
|
||||
|
||||
|
||||
def decode_tokens(
|
||||
tokens: Union[torch.LongTensor, TokensType],
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
raw_text_len: int,
|
||||
context_length: int,
|
||||
chat_format: str,
|
||||
verbose: bool = False,
|
||||
return_end_reason: bool = False,
|
||||
errors: str="replace",
|
||||
) -> str:
|
||||
if torch.is_tensor(tokens):
|
||||
tokens = tokens.cpu().numpy().tolist()
|
||||
|
||||
if chat_format == "chatml":
|
||||
return _decode_chatml(
|
||||
tokens,
|
||||
stop_words=[],
|
||||
eod_token_ids=[tokenizer.im_start_id, tokenizer.im_end_id],
|
||||
tokenizer=tokenizer,
|
||||
raw_text_len=raw_text_len,
|
||||
context_length=context_length,
|
||||
verbose=verbose,
|
||||
return_end_reason=return_end_reason,
|
||||
errors=errors,
|
||||
)
|
||||
elif chat_format == "raw":
|
||||
return _decode_default(
|
||||
tokens,
|
||||
stop_words=["<|endoftext|>"],
|
||||
eod_words=["<|endoftext|>"],
|
||||
tokenizer=tokenizer,
|
||||
raw_text_len=raw_text_len,
|
||||
verbose=verbose,
|
||||
return_end_reason=return_end_reason,
|
||||
errors=errors,
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError(f"Unknown chat format {chat_format!r}")
|
||||
|
||||
|
||||
class StopWordsLogitsProcessor(LogitsProcessor):
|
||||
"""
|
||||
:class:`transformers.LogitsProcessor` that enforces that when specified sequences appear, stop geration.
|
||||
|
||||
Args:
|
||||
stop_words_ids (:obj:`List[List[int]]`):
|
||||
List of list of token ids of stop ids. In order to get the tokens of the words
|
||||
that should not appear in the generated text, use :obj:`tokenizer(bad_word,
|
||||
add_prefix_space=True).input_ids`.
|
||||
eos_token_id (:obj:`int`):
|
||||
The id of the `end-of-sequence` token.
|
||||
"""
|
||||
|
||||
def __init__(self, stop_words_ids: Iterable[Iterable[int]], eos_token_id: int):
|
||||
|
||||
if not isinstance(stop_words_ids, List) or len(stop_words_ids) == 0:
|
||||
raise ValueError(
|
||||
f"`stop_words_ids` has to be a non-emtpy list, but is {stop_words_ids}."
|
||||
)
|
||||
if any(not isinstance(bad_word_ids, list) for bad_word_ids in stop_words_ids):
|
||||
raise ValueError(
|
||||
f"`stop_words_ids` has to be a list of lists, but is {stop_words_ids}."
|
||||
)
|
||||
if any(
|
||||
any(
|
||||
(not isinstance(token_id, (int, np.integer)) or token_id < 0)
|
||||
for token_id in stop_word_ids
|
||||
)
|
||||
for stop_word_ids in stop_words_ids
|
||||
):
|
||||
raise ValueError(
|
||||
f"Each list in `stop_words_ids` has to be a list of positive integers, but is {stop_words_ids}."
|
||||
)
|
||||
|
||||
self.stop_words_ids = list(
|
||||
filter(
|
||||
lambda bad_token_seq: bad_token_seq != [eos_token_id], stop_words_ids
|
||||
)
|
||||
)
|
||||
self.eos_token_id = eos_token_id
|
||||
for stop_token_seq in self.stop_words_ids:
|
||||
assert (
|
||||
len(stop_token_seq) > 0
|
||||
), "Stop words token sequences {} cannot have an empty list".format(
|
||||
stop_words_ids
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self, input_ids: torch.LongTensor, scores: torch.FloatTensor
|
||||
) -> torch.FloatTensor:
|
||||
stopped_samples = self._calc_stopped_samples(input_ids)
|
||||
for i, should_stop in enumerate(stopped_samples):
|
||||
if should_stop:
|
||||
scores[i, self.eos_token_id] = float(2**15)
|
||||
return scores
|
||||
|
||||
def _tokens_match(self, prev_tokens: torch.LongTensor, tokens: List[int]) -> bool:
|
||||
if len(tokens) == 0:
|
||||
# if bad word tokens is just one token always ban it
|
||||
return True
|
||||
elif len(tokens) > len(prev_tokens):
|
||||
# if bad word tokens are longer then prev input_ids they can't be equal
|
||||
return False
|
||||
elif prev_tokens[-len(tokens) :].tolist() == tokens:
|
||||
# if tokens match
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
def _calc_stopped_samples(self, prev_input_ids: Iterable[int]) -> Iterable[int]:
|
||||
stopped_samples = []
|
||||
for prev_input_ids_slice in prev_input_ids:
|
||||
match = False
|
||||
for stop_token_seq in self.stop_words_ids:
|
||||
if self._tokens_match(prev_input_ids_slice, stop_token_seq):
|
||||
# if tokens do not match continue
|
||||
match = True
|
||||
break
|
||||
stopped_samples.append(match)
|
||||
|
||||
return stopped_samples
|
||||
|
||||
|
||||
def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float("Inf")):
|
||||
"""This function has been mostly taken from huggingface conversational
|
||||
ai code at
|
||||
https://medium.com/huggingface/how-to-build-a-state-of-the-art-
|
||||
conversational-ai-with-transfer-learning-2d818ac26313"""
|
||||
|
||||
if top_k > 0:
|
||||
# Remove all tokens with a probability less than the
|
||||
# last token of the top-k
|
||||
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
||||
logits[indices_to_remove] = filter_value
|
||||
|
||||
if top_p > 0.0:
|
||||
# Cconvert to 1D
|
||||
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
|
||||
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
||||
|
||||
# Remove tokens with cumulative probability above the threshold
|
||||
sorted_indices_to_remove = cumulative_probs > top_p
|
||||
# Shift the indices to the right to keep also the first token
|
||||
# above the threshold
|
||||
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
||||
sorted_indices_to_remove[..., 0] = 0
|
||||
for i in range(sorted_indices.size(0)):
|
||||
indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
|
||||
logits[i][indices_to_remove] = filter_value
|
||||
|
||||
return logits
|
||||
|
||||
|
||||
def switch(val1, val2, boolean):
|
||||
boolean = boolean.type_as(val1)
|
||||
return (1 - boolean) * val1 + boolean * val2
|
|
@ -0,0 +1,276 @@
|
|||
# Copyright (c) Alibaba Cloud.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
"""Tokenization classes for QWen."""
|
||||
|
||||
import base64
|
||||
import logging
|
||||
import os
|
||||
import unicodedata
|
||||
from typing import Collection, Dict, List, Set, Tuple, Union
|
||||
|
||||
import tiktoken
|
||||
from transformers import PreTrainedTokenizer, AddedToken
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
|
||||
|
||||
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
||||
ENDOFTEXT = "<|endoftext|>"
|
||||
IMSTART = "<|im_start|>"
|
||||
IMEND = "<|im_end|>"
|
||||
# as the default behavior is changed to allow special tokens in
|
||||
# regular texts, the surface forms of special tokens need to be
|
||||
# as different as possible to minimize the impact
|
||||
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
|
||||
# changed to use actual index to avoid misconfiguration with vocabulary expansion
|
||||
SPECIAL_START_ID = 151643
|
||||
SPECIAL_TOKENS = tuple(
|
||||
enumerate(
|
||||
(
|
||||
(
|
||||
ENDOFTEXT,
|
||||
IMSTART,
|
||||
IMEND,
|
||||
)
|
||||
+ EXTRAS
|
||||
),
|
||||
start=SPECIAL_START_ID,
|
||||
)
|
||||
)
|
||||
SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
|
||||
|
||||
|
||||
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
||||
with open(tiktoken_bpe_file, "rb") as f:
|
||||
contents = f.read()
|
||||
return {
|
||||
base64.b64decode(token): int(rank)
|
||||
for token, rank in (line.split() for line in contents.splitlines() if line)
|
||||
}
|
||||
|
||||
|
||||
class QWenTokenizer(PreTrainedTokenizer):
|
||||
"""QWen tokenizer."""
|
||||
|
||||
vocab_files_names = VOCAB_FILES_NAMES
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_file,
|
||||
errors="replace",
|
||||
extra_vocab_file=None,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(**kwargs)
|
||||
|
||||
# how to handle errors in decoding UTF-8 byte sequences
|
||||
# use ignore if you are in streaming inference
|
||||
self.errors = errors
|
||||
|
||||
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
|
||||
self.special_tokens = {
|
||||
token: index
|
||||
for index, token in SPECIAL_TOKENS
|
||||
}
|
||||
|
||||
# try load extra vocab from file
|
||||
if extra_vocab_file is not None:
|
||||
used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values())
|
||||
extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file)
|
||||
for token, index in extra_mergeable_ranks.items():
|
||||
if token in self.mergeable_ranks:
|
||||
logger.info(f"extra token {token} exists, skipping")
|
||||
continue
|
||||
if index in used_ids:
|
||||
logger.info(f'the index {index} for extra token {token} exists, skipping')
|
||||
continue
|
||||
self.mergeable_ranks[token] = index
|
||||
# the index may be sparse after this, but don't worry tiktoken.Encoding will handle this
|
||||
|
||||
enc = tiktoken.Encoding(
|
||||
"Qwen",
|
||||
pat_str=PAT_STR,
|
||||
mergeable_ranks=self.mergeable_ranks,
|
||||
special_tokens=self.special_tokens,
|
||||
)
|
||||
assert (
|
||||
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
|
||||
), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
|
||||
|
||||
self.decoder = {
|
||||
v: k for k, v in self.mergeable_ranks.items()
|
||||
} # type: dict[int, bytes|str]
|
||||
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
||||
|
||||
self.tokenizer = enc # type: tiktoken.Encoding
|
||||
|
||||
self.eod_id = self.tokenizer.eot_token
|
||||
self.im_start_id = self.special_tokens[IMSTART]
|
||||
self.im_end_id = self.special_tokens[IMEND]
|
||||
|
||||
def __getstate__(self):
|
||||
# for pickle lovers
|
||||
state = self.__dict__.copy()
|
||||
del state["tokenizer"]
|
||||
return state
|
||||
|
||||
def __setstate__(self, state):
|
||||
# tokenizer is not python native; don't pass it; rebuild it
|
||||
self.__dict__.update(state)
|
||||
enc = tiktoken.Encoding(
|
||||
"Qwen",
|
||||
pat_str=PAT_STR,
|
||||
mergeable_ranks=self.mergeable_ranks,
|
||||
special_tokens=self.special_tokens,
|
||||
)
|
||||
self.tokenizer = enc
|
||||
|
||||
def __len__(self) -> int:
|
||||
return self.tokenizer.n_vocab
|
||||
|
||||
def get_vocab(self) -> Dict[bytes, int]:
|
||||
return self.mergeable_ranks
|
||||
|
||||
def convert_tokens_to_ids(
|
||||
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
|
||||
) -> List[int]:
|
||||
ids = []
|
||||
if isinstance(tokens, (str, bytes)):
|
||||
if tokens in self.special_tokens:
|
||||
return self.special_tokens[tokens]
|
||||
else:
|
||||
return self.mergeable_ranks.get(tokens)
|
||||
for token in tokens:
|
||||
if token in self.special_tokens:
|
||||
ids.append(self.special_tokens[token])
|
||||
else:
|
||||
ids.append(self.mergeable_ranks.get(token))
|
||||
return ids
|
||||
|
||||
def _add_tokens(
|
||||
self,
|
||||
new_tokens: Union[List[str], List[AddedToken]],
|
||||
special_tokens: bool = False,
|
||||
) -> int:
|
||||
if not special_tokens and new_tokens:
|
||||
raise ValueError("Adding regular tokens is not supported")
|
||||
for token in new_tokens:
|
||||
surface_form = token.content if isinstance(token, AddedToken) else token
|
||||
if surface_form not in SPECIAL_TOKENS_SET:
|
||||
raise ValueError("Adding unknown special tokens is not supported")
|
||||
return 0
|
||||
|
||||
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
||||
"""
|
||||
Save only the vocabulary of the tokenizer (vocabulary).
|
||||
|
||||
Returns:
|
||||
`Tuple(str)`: Paths to the files saved.
|
||||
"""
|
||||
file_path = os.path.join(save_directory, "qwen.tiktoken")
|
||||
with open(file_path, "w", encoding="utf8") as w:
|
||||
for k, v in self.mergeable_ranks.items():
|
||||
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
|
||||
w.write(line)
|
||||
return (file_path,)
|
||||
|
||||
def tokenize(
|
||||
self,
|
||||
text: str,
|
||||
allowed_special: Union[Set, str] = "all",
|
||||
disallowed_special: Union[Collection, str] = (),
|
||||
**kwargs,
|
||||
) -> List[Union[bytes, str]]:
|
||||
"""
|
||||
Converts a string in a sequence of tokens.
|
||||
|
||||
Args:
|
||||
text (`str`):
|
||||
The sequence to be encoded.
|
||||
allowed_special (`Literal["all"]` or `set`):
|
||||
The surface forms of the tokens to be encoded as special tokens in regular texts.
|
||||
Default to "all".
|
||||
disallowed_special (`Literal["all"]` or `Collection`):
|
||||
The surface forms of the tokens that should not be in regular texts and trigger errors.
|
||||
Default to an empty tuple.
|
||||
|
||||
kwargs (additional keyword arguments, *optional*):
|
||||
Will be passed to the underlying model specific encode method.
|
||||
|
||||
Returns:
|
||||
`List[bytes|str]`: The list of tokens.
|
||||
"""
|
||||
tokens = []
|
||||
text = unicodedata.normalize("NFC", text)
|
||||
|
||||
# this implementation takes a detour: text -> token id -> token surface forms
|
||||
for t in self.tokenizer.encode(
|
||||
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
||||
):
|
||||
tokens.append(self.decoder[t])
|
||||
return tokens
|
||||
|
||||
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
||||
"""
|
||||
Converts a sequence of tokens in a single string.
|
||||
"""
|
||||
text = ""
|
||||
temp = b""
|
||||
for t in tokens:
|
||||
if isinstance(t, str):
|
||||
if temp:
|
||||
text += temp.decode("utf-8", errors=self.errors)
|
||||
temp = b""
|
||||
text += t
|
||||
elif isinstance(t, bytes):
|
||||
temp += t
|
||||
else:
|
||||
raise TypeError("token should only be of type types or str")
|
||||
if temp:
|
||||
text += temp.decode("utf-8", errors=self.errors)
|
||||
return text
|
||||
|
||||
@property
|
||||
def vocab_size(self):
|
||||
return self.tokenizer.n_vocab
|
||||
|
||||
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
||||
"""Converts an id to a token, special tokens included"""
|
||||
if index in self.decoder:
|
||||
return self.decoder[index]
|
||||
raise ValueError("unknown ids")
|
||||
|
||||
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
||||
"""Converts a token to an id using the vocab, special tokens included"""
|
||||
if token in self.special_tokens:
|
||||
return self.special_tokens[token]
|
||||
if token in self.mergeable_ranks:
|
||||
return self.mergeable_ranks[token]
|
||||
raise ValueError("unknown token")
|
||||
|
||||
def _tokenize(self, text: str, **kwargs):
|
||||
"""
|
||||
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
||||
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
||||
|
||||
Do NOT take care of added tokens.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def _decode(
|
||||
self,
|
||||
token_ids: Union[int, List[int]],
|
||||
skip_special_tokens: bool = False,
|
||||
errors: str = None,
|
||||
**kwargs,
|
||||
) -> str:
|
||||
if isinstance(token_ids, int):
|
||||
token_ids = [token_ids]
|
||||
if skip_special_tokens:
|
||||
token_ids = [i for i in token_ids if i < self.eod_id]
|
||||
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
|
|
@ -0,0 +1,10 @@
|
|||
{
|
||||
"model_max_length": 8192,
|
||||
"tokenizer_class": "QWenTokenizer",
|
||||
"auto_map": {
|
||||
"AutoTokenizer": [
|
||||
"tokenization_qwen.QWenTokenizer",
|
||||
null
|
||||
]
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue