Refine model of qwen and add runner.

This commit is contained in:
Colin 2024-01-21 12:45:56 +08:00
parent 7c047f0b32
commit 9d28280cb1
8 changed files with 157 additions and 684 deletions

View File

@ -1,5 +0,0 @@
{
"framework": "pytorch",
"task": "chat",
"allow_remote": true
}

View File

@ -1,55 +0,0 @@
from torch.utils import cpp_extension
import pathlib
import os
import subprocess
def _get_cuda_bare_metal_version(cuda_dir):
raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"],
universal_newlines=True)
output = raw_output.split()
release_idx = output.index("release") + 1
release = output[release_idx].split(".")
bare_metal_major = release[0]
bare_metal_minor = release[1][0]
return raw_output, bare_metal_major, bare_metal_minor
def _create_build_dir(buildpath):
try:
os.mkdir(buildpath)
except OSError:
if not os.path.isdir(buildpath):
print(f"Creation of the build directory {buildpath} failed")
# Check if cuda 11 is installed for compute capability 8.0
cc_flag = []
_, bare_metal_major, bare_metal_minor = _get_cuda_bare_metal_version(cpp_extension.CUDA_HOME)
if int(bare_metal_major) >= 11:
cc_flag.append('-gencode')
cc_flag.append('arch=compute_80,code=sm_80')
if int(bare_metal_minor) >= 7:
cc_flag.append('-gencode')
cc_flag.append('arch=compute_90,code=sm_90')
# Build path
srcpath = pathlib.Path(__file__).parent.absolute()
buildpath = srcpath / 'build'
_create_build_dir(buildpath)
def _cpp_extention_load_helper(name, sources, extra_cuda_flags):
return cpp_extension.load(
name=name,
sources=sources,
build_directory=buildpath,
extra_cflags=['-O3', ],
extra_cuda_cflags=['-O3',
'-gencode', 'arch=compute_70,code=sm_70',
'--use_fast_math'] + extra_cuda_flags + cc_flag,
verbose=1
)
extra_flags = []
cache_autogptq_cuda_256_sources = ["./cache_autogptq_cuda_256.cpp",
"./cache_autogptq_cuda_kernel_256.cu"]
cache_autogptq_cuda_256 = _cpp_extention_load_helper("cache_autogptq_cuda_256", cache_autogptq_cuda_256_sources, extra_flags)

View File

@ -5,6 +5,7 @@ from transformers.generation import GenerationConfig
from transformers import AutoConfig from transformers import AutoConfig
from modeling_qwen import QWenLMHeadModel from modeling_qwen import QWenLMHeadModel
from modeling_qwen import QwenRunner
seed = 4321 seed = 4321
torch.manual_seed(seed) torch.manual_seed(seed)
@ -35,8 +36,10 @@ model = model.eval()
# model_dir, trust_remote_code=True # model_dir, trust_remote_code=True
# ) # )
runner = QwenRunner(model)
# 第一轮对话 # 第一轮对话
response, history, decode_tokens = model.chat(tokenizer, "东南亚国家日本的首都是什么市", "", history=None) response, history, decode_tokens = runner.Chat(tokenizer, "东南亚国家日本的首都是什么市", "")
print(decode_tokens) print(decode_tokens)
# <|im_start|>system # <|im_start|>system
# You are a helpful assistant.<|im_end|> # You are a helpful assistant.<|im_end|>
@ -46,7 +49,8 @@ print(decode_tokens)
# 日本的首都东京。<|im_end|><|endoftext|> # 日本的首都东京。<|im_end|><|endoftext|>
# 第二轮对话 # 第二轮对话
response, history, decode_tokens = model.chat(tokenizer, "给我讲一个年轻人奋斗创业最终取得成功的故事。", "", history=None)
response, history, decode_tokens = runner.Chat(tokenizer, "给我讲一个年轻人奋斗创业最终取得成功的故事。", "")
print(decode_tokens) print(decode_tokens)
if decode_tokens.split("\n")[-2] != """这个故事告诉我们,只要我们有决心和毅力,就一定能够克服困难,实现我们的梦想。<|im_end|>""": if decode_tokens.split("\n")[-2] != """这个故事告诉我们,只要我们有决心和毅力,就一定能够克服困难,实现我们的梦想。<|im_end|>""":

View File

@ -1,403 +0,0 @@
# This code is based on the revised code from fastchat based on tatsu-lab/stanford_alpaca.
from dataclasses import dataclass, field
import json
import math
import logging
import os
from typing import Dict, Optional, List
import torch
from torch.utils.data import Dataset
from deepspeed import zero
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
import transformers
from transformers import Trainer, GPTQConfig, deepspeed
from transformers.trainer_pt_utils import LabelSmoother
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
from accelerate.utils import DistributedType
from modelscope import snapshot_download
from modeling_qwen import QWenLMHeadModel
IGNORE_TOKEN_ID = LabelSmoother.ignore_index
@dataclass
class ModelArguments:
model_name_or_path: Optional[str] = field(default="qwen/Qwen-1_8B-Chat")
@dataclass
class DataArguments:
data_path: str = field(
default=None, metadata={"help": "Path to the training data."}
)
eval_data_path: str = field(
default=None, metadata={"help": "Path to the evaluation data."}
)
lazy_preprocess: bool = False
@dataclass
class TrainingArguments(transformers.TrainingArguments):
cache_dir: Optional[str] = field(default=None)
optim: str = field(default="adamw_torch")
model_max_length: int = field(
default=8192,
metadata={
"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
},
)
use_lora: bool = False
@dataclass
class LoraArguments:
lora_r: int = 64
lora_alpha: int = 16
lora_dropout: float = 0.05
lora_target_modules: List[str] = field(
default_factory=lambda: ["c_attn", "c_proj", "w1", "w2"]
)
lora_weight_path: str = ""
lora_bias: str = "none"
q_lora: bool = False
def maybe_zero_3(param):
if hasattr(param, "ds_id"):
assert param.ds_status == ZeroParamStatus.NOT_AVAILABLE
with zero.GatheredParameters([param]):
param = param.data.detach().cpu().clone()
else:
param = param.detach().cpu().clone()
return param
# Borrowed from peft.utils.get_peft_model_state_dict
def get_peft_state_maybe_zero_3(named_params, bias):
if bias == "none":
to_return = {k: t for k, t in named_params if "lora_" in k}
elif bias == "all":
to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k}
elif bias == "lora_only":
to_return = {}
maybe_lora_bias = {}
lora_bias_names = set()
for k, t in named_params:
if "lora_" in k:
to_return[k] = t
bias_name = k.split("lora_")[0] + "bias"
lora_bias_names.add(bias_name)
elif "bias" in k:
maybe_lora_bias[k] = t
for k, t in maybe_lora_bias:
if bias_name in lora_bias_names:
to_return[bias_name] = t
else:
raise NotImplementedError
to_return = {k: maybe_zero_3(v) for k, v in to_return.items()}
return to_return
local_rank = None
def rank0_print(*args):
if local_rank == 0:
print(*args)
def safe_save_model_for_hf_trainer(
trainer: transformers.Trainer, output_dir: str, bias="none"
):
"""Collects the state dict and dump to disk."""
# check if zero3 mode enabled
if deepspeed.is_deepspeed_zero3_enabled():
state_dict = trainer.model_wrapped._zero3_consolidated_16bit_state_dict()
else:
if trainer.args.use_lora:
state_dict = get_peft_state_maybe_zero_3(
trainer.model.named_parameters(), bias
)
else:
state_dict = trainer.model.state_dict()
if trainer.args.should_save and trainer.args.local_rank == 0:
trainer._save(output_dir, state_dict=state_dict)
def preprocess(
sources,
tokenizer: transformers.PreTrainedTokenizer,
max_len: int,
system_message: str = "You are a helpful assistant.",
) -> Dict:
roles = {"user": "<|im_start|>user", "assistant": "<|im_start|>assistant"}
im_start = tokenizer.im_start_id
im_end = tokenizer.im_end_id
nl_tokens = tokenizer("\n").input_ids
_system = tokenizer("system").input_ids + nl_tokens
_user = tokenizer("user").input_ids + nl_tokens
_assistant = tokenizer("assistant").input_ids + nl_tokens
# Apply prompt templates
input_ids, targets = [], []
for i, source in enumerate(sources):
if roles[source[0]["from"]] != roles["user"]:
source = source[1:]
input_id, target = [], []
system = (
[im_start]
+ _system
+ tokenizer(system_message).input_ids
+ [im_end]
+ nl_tokens
)
input_id += system
target += (
[im_start] + [IGNORE_TOKEN_ID] * (len(system) - 3) + [im_end] + nl_tokens
)
assert len(input_id) == len(target)
for j, sentence in enumerate(source):
role = roles[sentence["from"]]
_input_id = (
tokenizer(role).input_ids
+ nl_tokens
+ tokenizer(sentence["value"]).input_ids
+ [im_end]
+ nl_tokens
)
input_id += _input_id
if role == "<|im_start|>user":
_target = (
[im_start]
+ [IGNORE_TOKEN_ID] * (len(_input_id) - 3)
+ [im_end]
+ nl_tokens
)
elif role == "<|im_start|>assistant":
_target = (
[im_start]
+ [IGNORE_TOKEN_ID] * len(tokenizer(role).input_ids)
+ _input_id[len(tokenizer(role).input_ids) + 1 : -2]
+ [im_end]
+ nl_tokens
)
else:
raise NotImplementedError
target += _target
assert len(input_id) == len(target)
input_id += [tokenizer.pad_token_id] * (max_len - len(input_id))
target += [IGNORE_TOKEN_ID] * (max_len - len(target))
input_ids.append(input_id[:max_len])
targets.append(target[:max_len])
input_ids = torch.tensor(input_ids, dtype=torch.int)
targets = torch.tensor(targets, dtype=torch.int)
return dict(
input_ids=input_ids,
labels=targets,
attention_mask=input_ids.ne(tokenizer.pad_token_id),
)
class SupervisedDataset(Dataset):
"""Dataset for supervised fine-tuning."""
def __init__(
self, raw_data, tokenizer: transformers.PreTrainedTokenizer, max_len: int
):
super(SupervisedDataset, self).__init__()
rank0_print("Formatting inputs...")
sources = [example["conversations"] for example in raw_data]
data_dict = preprocess(sources, tokenizer, max_len)
self.input_ids = data_dict["input_ids"]
self.labels = data_dict["labels"]
self.attention_mask = data_dict["attention_mask"]
def __len__(self):
return len(self.input_ids)
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
return dict(
input_ids=self.input_ids[i],
labels=self.labels[i],
attention_mask=self.attention_mask[i],
)
class LazySupervisedDataset(Dataset):
"""Dataset for supervised fine-tuning."""
def __init__(
self, raw_data, tokenizer: transformers.PreTrainedTokenizer, max_len: int
):
super(LazySupervisedDataset, self).__init__()
self.tokenizer = tokenizer
self.max_len = max_len
rank0_print("Formatting inputs...Skip in lazy mode")
self.tokenizer = tokenizer
self.raw_data = raw_data
self.cached_data_dict = {}
def __len__(self):
return len(self.raw_data)
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
if i in self.cached_data_dict:
return self.cached_data_dict[i]
ret = preprocess(
[self.raw_data[i]["conversations"]], self.tokenizer, self.max_len
)
ret = dict(
input_ids=ret["input_ids"][0],
labels=ret["labels"][0],
attention_mask=ret["attention_mask"][0],
)
self.cached_data_dict[i] = ret
return ret
def make_supervised_data_module(
tokenizer: transformers.PreTrainedTokenizer,
data_args,
max_len,
) -> Dict:
"""Make dataset and collator for supervised fine-tuning."""
dataset_cls = (
LazySupervisedDataset if data_args.lazy_preprocess else SupervisedDataset
)
rank0_print("Loading data...")
train_json = json.load(open(data_args.data_path, "r"))
train_dataset = dataset_cls(train_json, tokenizer=tokenizer, max_len=max_len)
if data_args.eval_data_path:
eval_json = json.load(open(data_args.eval_data_path, "r"))
eval_dataset = dataset_cls(eval_json, tokenizer=tokenizer, max_len=max_len)
else:
eval_dataset = None
return dict(train_dataset=train_dataset, eval_dataset=eval_dataset)
def train():
global local_rank
parser = transformers.HfArgumentParser(
(ModelArguments, DataArguments, TrainingArguments, LoraArguments)
)
(
model_args,
data_args,
training_args,
lora_args,
) = parser.parse_args_into_dataclasses()
# This serves for single-gpu qlora.
if (
getattr(training_args, "deepspeed", None)
and int(os.environ.get("WORLD_SIZE", 1)) == 1
):
training_args.distributed_state.distributed_type = DistributedType.DEEPSPEED
local_rank = training_args.local_rank
device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if lora_args.q_lora:
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)} if ddp else "auto"
if len(training_args.fsdp) > 0 or deepspeed.is_deepspeed_zero3_enabled():
logging.warning("FSDP or ZeRO3 are incompatible with QLoRA.")
model_dir = snapshot_download(model_args.model_name_or_path)
# Set RoPE scaling factor
config = transformers.AutoConfig.from_pretrained(
model_dir,
cache_dir=training_args.cache_dir,
trust_remote_code=True,
)
config.use_cache = False
# Load model and tokenizer
model = QWenLMHeadModel(config)
model = model.from_pretrained(
model_dir,
config=config,
cache_dir=training_args.cache_dir,
device_map=device_map,
trust_remote_code=True,
quantization_config=GPTQConfig(bits=4, disable_exllama=True)
if training_args.use_lora and lora_args.q_lora
else None,
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_dir,
cache_dir=training_args.cache_dir,
model_max_length=training_args.model_max_length,
padding_side="right",
use_fast=False,
trust_remote_code=True,
)
tokenizer.pad_token_id = tokenizer.eod_id
if training_args.use_lora:
if lora_args.q_lora or "chat" in model_dir.lower():
modules_to_save = None
else:
modules_to_save = ["wte", "lm_head"]
lora_config = LoraConfig(
r=lora_args.lora_r,
lora_alpha=lora_args.lora_alpha,
target_modules=lora_args.lora_target_modules,
lora_dropout=lora_args.lora_dropout,
bias=lora_args.lora_bias,
task_type="CAUSAL_LM",
modules_to_save=modules_to_save, # This argument serves for adding new tokens.
)
if lora_args.q_lora:
model = prepare_model_for_kbit_training(
model, use_gradient_checkpointing=training_args.gradient_checkpointing
)
model = get_peft_model(model, lora_config)
# Print peft trainable params
model.print_trainable_parameters()
if training_args.gradient_checkpointing:
model.enable_input_require_grads()
# Load data
data_module = make_supervised_data_module(
tokenizer=tokenizer, data_args=data_args, max_len=training_args.model_max_length
)
# Start trainner
trainer = Trainer(
model=model, tokenizer=tokenizer, args=training_args, **data_module
)
trainer.train()
trainer.save_state()
safe_save_model_for_hf_trainer(
trainer=trainer, output_dir=training_args.output_dir, bias=lora_args.lora_bias
)
if __name__ == "__main__":
train()

View File

@ -1,65 +0,0 @@
#!/bin/bash
export CUDA_DEVICE_MAX_CONNECTIONS=1
MODEL="qwen/Qwen-1_8B-Chat" # Set the path if you do not want to load from huggingface directly
# ATTENTION: specify the path to your training data, which should be a json file consisting of a list of conversations.
# See the section for finetuning in README for more information.
DATA="data.json"
function usage() {
echo '
Usage: bash finetune/finetune_lora_single_gpu.sh [-m MODEL_PATH] [-d DATA_PATH]
'
}
while [[ "$1" != "" ]]; do
case $1 in
-m | --model )
shift
MODEL=$1
;;
-d | --data )
shift
DATA=$1
;;
-h | --help )
usage
exit 0
;;
* )
echo "Unknown argument ${1}"
exit 1
;;
esac
shift
done
export CUDA_VISIBLE_DEVICES=0
python finetune.py \
--model_name_or_path $MODEL \
--data_path $DATA \
--bf16 False \
--output_dir output_qwen \
--num_train_epochs 5 \
--per_device_train_batch_size 2 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 1000 \
--save_total_limit 10 \
--learning_rate 3e-4 \
--weight_decay 0.1 \
--adam_beta2 0.95 \
--warmup_ratio 0.01 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--report_to "none" \
--model_max_length 512 \
--lazy_preprocess True \
--gradient_checkpointing \
--use_lora
# If you use fp16 instead of bf16, you should use deepspeed
# --fp16 True --deepspeed finetune/ds_config_zero2.json

View File

@ -16,10 +16,7 @@ from torch import nn
from safetensors.torch import load_file as safe_load_file from safetensors.torch import load_file as safe_load_file
from safetensors.torch import save_file as safe_save_file from safetensors.torch import save_file as safe_save_file
from transformers.generation.utils import GenerateOutput
from configuration_qwen import QWenConfig
from qwen_generation_utils import ( from qwen_generation_utils import (
HistoryType,
make_context, make_context,
decode_tokens, decode_tokens,
) )
@ -137,7 +134,6 @@ class QWenLMHeadModel(nn.Module):
def __init__(self, config): def __init__(self, config):
super().__init__() super().__init__()
self.config = config self.config = config
self.transformer = QWenModel(config) self.transformer = QWenModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
@ -186,65 +182,42 @@ class QWenLMHeadModel(nn.Module):
print(f"All model checkpoint weights were used when initializing {cls.__class__.__name__}.\n") print(f"All model checkpoint weights were used when initializing {cls.__class__.__name__}.\n")
return cls return cls
class QwenRunner:
def __init__(self, qwen):
self.qwen = qwen
@torch.no_grad() @torch.no_grad()
def chat( def Chat(
self, self,
tokenizer, tokenizer,
query: str, query: str,
query_assistant: str, query_assistant: str,
history: Optional[HistoryType],
system: str = "You are a helpful assistant.", system: str = "You are a helpful assistant.",
**kwargs, history=[],
) -> Tuple[str, HistoryType]: ):
if history is None: qwen = self.qwen
history = [] history = copy.deepcopy(history)
else:
history = copy.deepcopy(history)
raw_text, context_tokens = make_context(tokenizer, query, query_assistant, history=history, system=system) raw_text, context_tokens = make_context(tokenizer, query, query_assistant, history=history, system=system)
input_ids = torch.tensor([context_tokens]).to(next(self.parameters()).device) input_ids = torch.tensor([context_tokens]).to(next(qwen.parameters()).device)
outputs = self.generate( eos_token_id_tensor = torch.tensor([qwen.config.eos_token_id]).to(input_ids.device)
input_ids, pad_token_id = qwen.config.pad_token_id
tokenizer=tokenizer,
**kwargs,
)
decoded, response, end_reason = decode_tokens(
outputs[0],
tokenizer,
raw_text_len=len(raw_text),
context_length=len(context_tokens),
errors="replace",
)
history.append((query, response))
return response, history, decoded
def generate(
self,
input_ids: Optional[torch.Tensor] = None,
tokenizer=None,
) -> Union[GenerateOutput, torch.LongTensor]:
pad_token_id = self.config.pad_token_id
eos_token_id_tensor = torch.tensor([self.config.eos_token_id]).to(input_ids.device)
# keep track of which sequences are already finished
unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device) unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
this_peer_finished = False this_peer_finished = False
# auto-regressive generation
while True: while True:
# forward pass to get next token outputs = self.forwardQWen(input_ids)
outputs = forwardQWen(self, input_ids)
next_token_scores = outputs[:, -1, :] next_token_scores = outputs[:, -1, :]
# repetition_penalty # repetition_penalty
penalty = self.config.repetition_penalty penalty = qwen.config.repetition_penalty
score = torch.gather(next_token_scores, 1, input_ids) score = torch.gather(next_token_scores, 1, input_ids)
# if score < 0 then repetition penalty has to be multiplied to reduce the token probabilities # if score < 0 then repetition penalty has to be multiplied to reduce the token probabilities
score = torch.where(score < 0, score * penalty, score / penalty) score = torch.where(score < 0, score * penalty, score / penalty)
next_token_scores = next_token_scores.scatter_(1, input_ids, score) next_token_scores = next_token_scores.scatter_(1, input_ids, score)
# top_p # top_p
top_p = self.config.top_p top_p = qwen.config.top_p
filter_value = -float("Inf") filter_value = -float("Inf")
min_tokens_to_keep = 1 min_tokens_to_keep = 1
sorted_logits, sorted_indices = torch.sort(next_token_scores, descending=False) sorted_logits, sorted_indices = torch.sort(next_token_scores, descending=False)
@ -262,146 +235,141 @@ class QWenLMHeadModel(nn.Module):
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1) next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences) next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
# update generated ids, model inputs, and length for next step
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1) input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
unfinished_sequences = unfinished_sequences.mul( unfinished_sequences = unfinished_sequences.mul(
next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0) next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
) )
# decoded, response, end_reason = decode_tokens(
# next_tokens,
# tokenizer,
# raw_text_len=0,
# context_length=0,
# errors="replace",
# )
# print(decoded)
# stop when each sentence is finished
if unfinished_sequences.max() == 0: if unfinished_sequences.max() == 0:
this_peer_finished = True this_peer_finished = True
if this_peer_finished: if this_peer_finished:
break break
return input_ids
decoded, response, end_reason = decode_tokens(
input_ids[0],
tokenizer,
raw_text_len=len(raw_text),
context_length=len(context_tokens),
errors="replace",
)
history.append((query, response))
return response, history, decoded
def forwardAttention( def forwardAttention(
attention, self,
hidden_states: Optional[Tuple[torch.FloatTensor]], attention,
rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None, hidden_states: Optional[Tuple[torch.FloatTensor]],
): rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
def apply_rotary_pos_emb(t, freqs): ):
def _rotate_half(x): def apply_rotary_pos_emb(t, freqs):
x = rearrange(x, "... (j d) -> ... j d", j=2) def _rotate_half(x):
x1, x2 = x.unbind(dim=-2) x = rearrange(x, "... (j d) -> ... j d", j=2)
return torch.cat((-x2, x1), dim=-1) x1, x2 = x.unbind(dim=-2)
return torch.cat((-x2, x1), dim=-1)
rot_dim = freqs[0].shape[-1] rot_dim = freqs[0].shape[-1]
cos, sin = freqs cos, sin = freqs
t_float = t.float() t_float = t.float()
t_rot, t_pass = t_float[..., :rot_dim], t_float[..., rot_dim:] t_rot, t_pass = t_float[..., :rot_dim], t_float[..., rot_dim:]
t_rot = (t_rot * cos) + (_rotate_half(t_rot) * sin) t_rot = (t_rot * cos) + (_rotate_half(t_rot) * sin)
return torch.cat((t_rot, t_pass), dim=-1).type_as(t) return torch.cat((t_rot, t_pass), dim=-1).type_as(t)
atten = attention atten = attention
mixed_x_layer = atten.c_attn(hidden_states) mixed_x_layer = atten.c_attn(hidden_states)
query, key, value = mixed_x_layer.split(atten.split_size, dim=2) query, key, value = mixed_x_layer.split(atten.split_size, dim=2)
query = atten._split_heads(query, atten.num_heads, atten.head_dim) query = atten._split_heads(query, atten.num_heads, atten.head_dim)
key = atten._split_heads(key, atten.num_heads, atten.head_dim) key = atten._split_heads(key, atten.num_heads, atten.head_dim)
value = atten._split_heads(value, atten.num_heads, atten.head_dim) value = atten._split_heads(value, atten.num_heads, atten.head_dim)
rotary_pos_emb = rotary_pos_emb_list[0] rotary_pos_emb = rotary_pos_emb_list[0]
rotary_pos_emb = [i[:, -query.shape[1] :, :, :] for i in rotary_pos_emb] rotary_pos_emb = [i[:, -query.shape[1] :, :, :] for i in rotary_pos_emb]
rotary_pos_emb = (rotary_pos_emb,) * 2 rotary_pos_emb = (rotary_pos_emb,) * 2
query = apply_rotary_pos_emb(query, rotary_pos_emb[0]) query = apply_rotary_pos_emb(query, rotary_pos_emb[0])
key = apply_rotary_pos_emb(key, rotary_pos_emb[1]) key = apply_rotary_pos_emb(key, rotary_pos_emb[1])
key_size = key.size(1) key_size = key.size(1)
causal_mask = torch.tril(torch.ones((key_size, key_size), dtype=torch.bool, device=query.device)).view( causal_mask = torch.tril(torch.ones((key_size, key_size), dtype=torch.bool, device=query.device)).view(
1, 1, key_size, key_size 1, 1, key_size, key_size
) )
query = query.permute(0, 2, 1, 3) query = query.permute(0, 2, 1, 3)
key = key.permute(0, 2, 1, 3) key = key.permute(0, 2, 1, 3)
value = value.permute(0, 2, 1, 3) value = value.permute(0, 2, 1, 3)
# qk = query @ key.transpose(-2, -1) # qk = query @ key.transpose(-2, -1)
# qk = qk[0] # qk = qk[0]
# prePath = "../generated/query_matmul_key/img/" # prePath = "../generated/query_matmul_key/img/"
# show.DumpTensorToImage( # show.DumpTensorToImage(
# qk, prePath + "q_matmul_k_sequence_" + str(key_size) + "_layer_" + str(self.index) + ".png" # qk, prePath + "q_matmul_k_sequence_" + str(key_size) + "_layer_" + str(self.index) + ".png"
# ) # )
attn_output = F.scaled_dot_product_attention(query, key, value, attn_mask=causal_mask).transpose(1, 2) attn_output = F.scaled_dot_product_attention(query, key, value, attn_mask=causal_mask).transpose(1, 2)
context_layer = atten._merge_heads(attn_output, atten.num_heads, atten.head_dim) context_layer = atten._merge_heads(attn_output, atten.num_heads, atten.head_dim)
attn_output = atten.c_proj(context_layer) attn_output = atten.c_proj(context_layer)
return attn_output return attn_output
def forwardQWenBlock(
self,
block,
hidden_states: Optional[Tuple[torch.FloatTensor]],
rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
):
layernorm_output = block.ln_1(hidden_states)
def forwardQWenBlock( attn_outputs = self.forwardAttention(block.attn, layernorm_output, rotary_pos_emb_list)
block, attn_output = attn_outputs[0]
hidden_states: Optional[Tuple[torch.FloatTensor]], layernorm_input = attn_output + hidden_states
rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
):
layernorm_output = block.ln_1(hidden_states)
attn_outputs = forwardAttention(block.attn, layernorm_output, rotary_pos_emb_list) layernorm_output = block.ln_2(layernorm_input)
attn_output = attn_outputs[0] a1 = block.mlp.w1(layernorm_output)
layernorm_input = attn_output + hidden_states a2 = block.mlp.w2(layernorm_output)
intermediate_parallel = a1 * F.silu(a2)
mlp_output = block.mlp.c_proj(intermediate_parallel)
layernorm_output = block.ln_2(layernorm_input) hidden_states = layernorm_input + mlp_output
a1 = block.mlp.w1(layernorm_output) return hidden_states
a2 = block.mlp.w2(layernorm_output)
intermediate_parallel = a1 * F.silu(a2)
mlp_output = block.mlp.c_proj(intermediate_parallel)
hidden_states = layernorm_input + mlp_output def forwardQWen(
return hidden_states self,
input_ids: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
):
transfm = self.qwen.transformer
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
hidden_states = transfm.wte(input_ids)
kv_seq_len = hidden_states.size()[1]
transfm.update_rotary_pos_emb_cache(kv_seq_len, ntk_alpha=1.0)
cos, sin = transfm._rotary_pos_emb_cache
rotary_pos_emb_list = [[cos[:, :kv_seq_len], sin[:, :kv_seq_len]]]
def forwardQWen( hidden_states = transfm.drop(hidden_states)
qwen, output_shape = input_shape + (hidden_states.size(-1),)
input_ids: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
):
transfm = qwen.transformer
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
hidden_states = transfm.wte(input_ids)
kv_seq_len = hidden_states.size()[1]
transfm.update_rotary_pos_emb_cache(kv_seq_len, ntk_alpha=1.0) for block in transfm.h:
cos, sin = transfm._rotary_pos_emb_cache hidden_states = self.forwardQWenBlock(block, hidden_states, rotary_pos_emb_list=rotary_pos_emb_list)
rotary_pos_emb_list = [[cos[:, :kv_seq_len], sin[:, :kv_seq_len]]]
hidden_states = transfm.drop(hidden_states) hidden_states = transfm.ln_f(hidden_states)
output_shape = input_shape + (hidden_states.size(-1),) hidden_states = hidden_states.view(output_shape)
for block in transfm.h: lm_logits = self.qwen.lm_head(hidden_states)
hidden_states = forwardQWenBlock(block, hidden_states, rotary_pos_emb_list=rotary_pos_emb_list)
hidden_states = transfm.ln_f(hidden_states) loss = None
hidden_states = hidden_states.view(output_shape) if labels is not None:
labels = labels.to(lm_logits.device)
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss_fct = CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
lm_logits = qwen.lm_head(hidden_states) # shift_labels = torch.ones([1,19]).to(lm_logits.device).to(torch.int64)
# shift_logits = lm_logits[..., :-1, :].contiguous()
# loss_fct = CrossEntropyLoss()
# loss = loss_fct(
# shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
# )
# loss.backward()
loss = None return lm_logits
if labels is not None:
labels = labels.to(lm_logits.device)
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss_fct = CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
# shift_labels = torch.ones([1,19]).to(lm_logits.device).to(torch.int64)
# shift_logits = lm_logits[..., :-1, :].contiguous()
# loss_fct = CrossEntropyLoss()
# loss = loss_fct(
# shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
# )
# loss.backward()
return lm_logits

View File

29
test/abc.py Normal file
View File

@ -0,0 +1,29 @@
from abc import ABC, abstractmethod
class People(ABC):
# @abstractmethod
def walk(self):
pass
@abstractmethod
def eat(self):
pass
def auto(self):
self.walk()
self.eat()
class kid1(People):
def __init__(self):
pass
def walk(self):
print('走路')
def eat(self):
print('吃饭')
if __name__ == '__main__':
k = kid1()
k.auto()