Update trainer to custom data.
This commit is contained in:
		
							parent
							
								
									1622bf3054
								
							
						
					
					
						commit
						9e8e92ae25
					
				| 
						 | 
					@ -7,8 +7,8 @@
 | 
				
			||||||
class QWenConfig:
 | 
					class QWenConfig:
 | 
				
			||||||
    def __init__(self):
 | 
					    def __init__(self):
 | 
				
			||||||
        self.vocab_size = 4096
 | 
					        self.vocab_size = 4096
 | 
				
			||||||
        self.hidden_size = 1024  # 1024 2048
 | 
					        self.hidden_size = 128  # 1024 2048
 | 
				
			||||||
        self.num_hidden_layers = 12  # 12 24
 | 
					        self.num_hidden_layers = 6  # 12 24
 | 
				
			||||||
        self.num_attention_heads = 8  # 8 16
 | 
					        self.num_attention_heads = 8  # 8 16
 | 
				
			||||||
        self.emb_dropout_prob = 0.0
 | 
					        self.emb_dropout_prob = 0.0
 | 
				
			||||||
        self.attn_dropout_prob = 0.0
 | 
					        self.attn_dropout_prob = 0.0
 | 
				
			||||||
| 
						 | 
					@ -20,7 +20,6 @@ class QWenConfig:
 | 
				
			||||||
        self.bf16 = False
 | 
					        self.bf16 = False
 | 
				
			||||||
        self.fp16 = False
 | 
					        self.fp16 = False
 | 
				
			||||||
        self.fp32 = False
 | 
					        self.fp32 = False
 | 
				
			||||||
        self.kv_channels = 128
 | 
					 | 
				
			||||||
        self.rotary_pct = 1.0
 | 
					        self.rotary_pct = 1.0
 | 
				
			||||||
        self.rotary_emb_base = 10000
 | 
					        self.rotary_emb_base = 10000
 | 
				
			||||||
        self.use_dynamic_ntk = True
 | 
					        self.use_dynamic_ntk = True
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -61,7 +61,7 @@ class LitModule(pl.LightningModule):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        self.metric_loss.update(loss)
 | 
					        self.metric_loss.update(loss)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        label_mask = labels != -100
 | 
					        label_mask = labels != 0
 | 
				
			||||||
        self.metric_accuracy.update(logits[label_mask], labels[label_mask])
 | 
					        self.metric_accuracy.update(logits[label_mask], labels[label_mask])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def on_validation_epoch_end(self) -> None:
 | 
					    def on_validation_epoch_end(self) -> None:
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
							
								
								
									
										101
									
								
								wit/lit_train.py
								
								
								
								
							
							
						
						
									
										101
									
								
								wit/lit_train.py
								
								
								
								
							| 
						 | 
					@ -6,7 +6,8 @@ from typing import Dict, Tuple
 | 
				
			||||||
import datasets
 | 
					import datasets
 | 
				
			||||||
import pytorch_lightning as pl
 | 
					import pytorch_lightning as pl
 | 
				
			||||||
import torch
 | 
					import torch
 | 
				
			||||||
from torch.utils.data import ConcatDataset, DataLoader, Dataset
 | 
					from torch.utils.data import ConcatDataset, DataLoader, Dataset, random_split, Subset
 | 
				
			||||||
 | 
					
 | 
				
			||||||
from transformers import (
 | 
					from transformers import (
 | 
				
			||||||
    BatchEncoding,
 | 
					    BatchEncoding,
 | 
				
			||||||
    DefaultDataCollator,
 | 
					    DefaultDataCollator,
 | 
				
			||||||
| 
						 | 
					@ -22,8 +23,6 @@ learning_rate = 0.0001
 | 
				
			||||||
use_tril_attention_mask = None
 | 
					use_tril_attention_mask = None
 | 
				
			||||||
precision = "32-true"  # "precision:bf16-mixed,16-mixed,32-true"
 | 
					precision = "32-true"  # "precision:bf16-mixed,16-mixed,32-true"
 | 
				
			||||||
tokenizer_name_or_path = None
 | 
					tokenizer_name_or_path = None
 | 
				
			||||||
dataset_name = ["/home/colin/develop/dataset/liwu/MNBVC/wiki"]
 | 
					 | 
				
			||||||
dataset_name = ["/home/colin/develop/dataset/liwu/MNBVC/wiki/20230198/58.jsonl.gz"]
 | 
					 | 
				
			||||||
train_batch_size = 256
 | 
					train_batch_size = 256
 | 
				
			||||||
val_batch_size = 16
 | 
					val_batch_size = 16
 | 
				
			||||||
num_proc = 8
 | 
					num_proc = 8
 | 
				
			||||||
| 
						 | 
					@ -34,11 +33,14 @@ seed = 42
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class SpecialDataset(Dataset):
 | 
					class SpecialDataset(Dataset):
 | 
				
			||||||
    def __init__(self, start, end, size=65536):
 | 
					    def __init__(self, start=1, end=4096, size=65536):
 | 
				
			||||||
        self.size = size
 | 
					        self.size = size
 | 
				
			||||||
        self.features = []
 | 
					        self.features = []
 | 
				
			||||||
        a = torch.randint(start, end, [size])
 | 
					        a = torch.randint(start, end, [size])
 | 
				
			||||||
        self.data = torch.stack([a, a * 2, a * 3, a * 4]).permute(1, 0)
 | 
					        b = torch.randint(start, end, [size])
 | 
				
			||||||
 | 
					        c = torch.randint(start, end, [size])
 | 
				
			||||||
 | 
					        d = torch.randint(start, end, [size])
 | 
				
			||||||
 | 
					        self.data = torch.stack([a, b, c, d, ((a + b + c + d) / 4).long()]).permute(1, 0)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def __len__(self):
 | 
					    def __len__(self):
 | 
				
			||||||
        return self.size
 | 
					        return self.size
 | 
				
			||||||
| 
						 | 
					@ -47,73 +49,12 @@ class SpecialDataset(Dataset):
 | 
				
			||||||
        output = {}
 | 
					        output = {}
 | 
				
			||||||
        data = self.data[idx]
 | 
					        data = self.data[idx]
 | 
				
			||||||
        output["input_ids"] = data
 | 
					        output["input_ids"] = data
 | 
				
			||||||
        output["labels"] = data
 | 
					        output["labels"] = data.clone()
 | 
				
			||||||
 | 
					        output["labels"][:4] = 0
 | 
				
			||||||
        output["token_type_ids"] = torch.zeros(data.shape)
 | 
					        output["token_type_ids"] = torch.zeros(data.shape)
 | 
				
			||||||
        return output
 | 
					        return output
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def split_raw_dataset(
 | 
					 | 
				
			||||||
    raw_dataset: datasets.DatasetDict,
 | 
					 | 
				
			||||||
) -> Tuple[datasets.Dataset, datasets.Dataset]:
 | 
					 | 
				
			||||||
    if "validation" in raw_dataset:
 | 
					 | 
				
			||||||
        train_dataset, val_dataset = raw_dataset["train"], raw_dataset["validation"]
 | 
					 | 
				
			||||||
    else:
 | 
					 | 
				
			||||||
        raw_dataset = raw_dataset["train"].train_test_split(test_size=0.05, seed=seed)
 | 
					 | 
				
			||||||
        train_dataset, val_dataset = raw_dataset["train"], raw_dataset["test"]
 | 
					 | 
				
			||||||
    return train_dataset, val_dataset
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
def process_dataset(dataset: datasets.Dataset, tokenizer: PreTrainedTokenizer) -> datasets.Dataset:
 | 
					 | 
				
			||||||
    def group_texts(examples: Dict[str, list], block_size: int = 512) -> BatchEncoding:
 | 
					 | 
				
			||||||
        concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
 | 
					 | 
				
			||||||
        total_length = len(concatenated_examples[list(examples.keys())[0]])
 | 
					 | 
				
			||||||
        total_length = (total_length // block_size) * block_size
 | 
					 | 
				
			||||||
        result = {
 | 
					 | 
				
			||||||
            k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
 | 
					 | 
				
			||||||
            for k, t in concatenated_examples.items()
 | 
					 | 
				
			||||||
        }
 | 
					 | 
				
			||||||
        result["labels"] = result["input_ids"].copy()
 | 
					 | 
				
			||||||
        result = BatchEncoding(result)
 | 
					 | 
				
			||||||
        return result
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    def format_inputs(examples):
 | 
					 | 
				
			||||||
        p = examples["段落"]
 | 
					 | 
				
			||||||
        mergeLine = ""
 | 
					 | 
				
			||||||
        for line in p:
 | 
					 | 
				
			||||||
            mergeLine += line["内容"] + "\n"
 | 
					 | 
				
			||||||
        return {"text": mergeLine}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    def tokenize_inputs(
 | 
					 | 
				
			||||||
        examples: Dict[str, list],
 | 
					 | 
				
			||||||
        tokenizer: PreTrainedTokenizer,
 | 
					 | 
				
			||||||
        column_name: str = "text",
 | 
					 | 
				
			||||||
    ) -> BatchEncoding:
 | 
					 | 
				
			||||||
        logits = tokenizer(examples[column_name], return_attention_mask=False)
 | 
					 | 
				
			||||||
        return logits
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    dataset_column_names = list(dataset.features)
 | 
					 | 
				
			||||||
    dataset = dataset.map(
 | 
					 | 
				
			||||||
        partial(format_inputs),
 | 
					 | 
				
			||||||
        batched=False,
 | 
					 | 
				
			||||||
        num_proc=num_proc,
 | 
					 | 
				
			||||||
        remove_columns=dataset_column_names,
 | 
					 | 
				
			||||||
    )
 | 
					 | 
				
			||||||
    dataset_column_names = list(dataset.features)
 | 
					 | 
				
			||||||
    dataset = dataset.map(
 | 
					 | 
				
			||||||
        partial(tokenize_inputs, tokenizer=tokenizer),
 | 
					 | 
				
			||||||
        batched=True,
 | 
					 | 
				
			||||||
        num_proc=num_proc,
 | 
					 | 
				
			||||||
        remove_columns=dataset_column_names,
 | 
					 | 
				
			||||||
    )
 | 
					 | 
				
			||||||
    dataset = dataset.map(
 | 
					 | 
				
			||||||
        partial(group_texts, block_size=tokenizer.model_max_length),
 | 
					 | 
				
			||||||
        batched=True,
 | 
					 | 
				
			||||||
        num_proc=num_proc,
 | 
					 | 
				
			||||||
    )
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    return dataset
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
if __name__ == "__main__":
 | 
					if __name__ == "__main__":
 | 
				
			||||||
    if tokenizer_name_or_path is None:
 | 
					    if tokenizer_name_or_path is None:
 | 
				
			||||||
        tokenizer_name_or_path = model_name
 | 
					        tokenizer_name_or_path = model_name
 | 
				
			||||||
| 
						 | 
					@ -125,26 +66,11 @@ if __name__ == "__main__":
 | 
				
			||||||
    lit_module = LitModule(model_dir, learning_rate, use_tril_attention_mask)
 | 
					    lit_module = LitModule(model_dir, learning_rate, use_tril_attention_mask)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    tokenizer = QWenTokenizer("./wit_b64.tiktoken", "./wit_char.tiktoken")
 | 
					    tokenizer = QWenTokenizer("./wit_b64.tiktoken", "./wit_char.tiktoken")
 | 
				
			||||||
    train_dataset_list = []
 | 
					 | 
				
			||||||
    val_dataset_list = []
 | 
					 | 
				
			||||||
    for dn in dataset_name:
 | 
					 | 
				
			||||||
        datanames = dn.split(".")
 | 
					 | 
				
			||||||
        if datanames[-1] == "gz" and datanames[-2] == "jsonl":
 | 
					 | 
				
			||||||
            raw_dataset = datasets.load_dataset("json", data_files=dn)
 | 
					 | 
				
			||||||
        elif datanames[-1] == "json":
 | 
					 | 
				
			||||||
            raw_dataset = datasets.load_dataset("json", data_files=dn)
 | 
					 | 
				
			||||||
        else:
 | 
					 | 
				
			||||||
            raw_dataset = datasets.load_dataset(dn)
 | 
					 | 
				
			||||||
        train_dataset, val_dataset = split_raw_dataset(raw_dataset)
 | 
					 | 
				
			||||||
        train_dataset = process_dataset(train_dataset, tokenizer)
 | 
					 | 
				
			||||||
        val_dataset = process_dataset(val_dataset, tokenizer)
 | 
					 | 
				
			||||||
        train_dataset_list.append(train_dataset)
 | 
					 | 
				
			||||||
        val_dataset_list.append(val_dataset)
 | 
					 | 
				
			||||||
    train_dataset = ConcatDataset(train_dataset_list)
 | 
					 | 
				
			||||||
    val_dataset = ConcatDataset(val_dataset_list)
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    train_dataset = SpecialDataset(0, 1000, 65536)
 | 
					    raw_dataset = SpecialDataset()
 | 
				
			||||||
    val_dataset = SpecialDataset(1000, 1024, 1024)
 | 
					    train_idx, val_idx = random_split(list(range(len(raw_dataset))), [0.95, 0.05])
 | 
				
			||||||
 | 
					    train_dataset = Subset(raw_dataset, train_idx.indices)
 | 
				
			||||||
 | 
					    val_dataset = Subset(raw_dataset, val_idx.indices)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    train_dataloader = DataLoader(
 | 
					    train_dataloader = DataLoader(
 | 
				
			||||||
        train_dataset,
 | 
					        train_dataset,
 | 
				
			||||||
| 
						 | 
					@ -160,7 +86,6 @@ if __name__ == "__main__":
 | 
				
			||||||
        num_workers=num_proc,
 | 
					        num_workers=num_proc,
 | 
				
			||||||
        collate_fn=DefaultDataCollator(),
 | 
					        collate_fn=DefaultDataCollator(),
 | 
				
			||||||
        persistent_workers=True,
 | 
					        persistent_workers=True,
 | 
				
			||||||
        shuffle=True,
 | 
					 | 
				
			||||||
    )
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    torch.set_float32_matmul_precision("medium")
 | 
					    torch.set_float32_matmul_precision("medium")
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -49,9 +49,8 @@ class QWenAttention(nn.Module):
 | 
				
			||||||
        self.split_size = config.hidden_size
 | 
					        self.split_size = config.hidden_size
 | 
				
			||||||
        self.num_heads = config.num_attention_heads
 | 
					        self.num_heads = config.num_attention_heads
 | 
				
			||||||
        self.head_dim = self.hidden_size // self.num_heads
 | 
					        self.head_dim = self.hidden_size // self.num_heads
 | 
				
			||||||
        self.projection_size = config.kv_channels * config.num_attention_heads
 | 
					        self.c_attn = nn.Linear(config.hidden_size, 3 * self.hidden_size)
 | 
				
			||||||
        self.c_attn = nn.Linear(config.hidden_size, 3 * self.projection_size)
 | 
					        self.c_proj = nn.Linear(config.hidden_size, self.hidden_size, bias=not config.no_bias)
 | 
				
			||||||
        self.c_proj = nn.Linear(config.hidden_size, self.projection_size, bias=not config.no_bias)
 | 
					 | 
				
			||||||
        self.attn_dropout = nn.Dropout(config.attn_dropout_prob)
 | 
					        self.attn_dropout = nn.Dropout(config.attn_dropout_prob)
 | 
				
			||||||
        self.index = index
 | 
					        self.index = index
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -96,17 +95,15 @@ class QWenModel(nn.Module):
 | 
				
			||||||
        super().__init__()
 | 
					        super().__init__()
 | 
				
			||||||
        self.wte = nn.Embedding(config.vocab_size, config.hidden_size)
 | 
					        self.wte = nn.Embedding(config.vocab_size, config.hidden_size)
 | 
				
			||||||
        self.drop = nn.Dropout(config.emb_dropout_prob)
 | 
					        self.drop = nn.Dropout(config.emb_dropout_prob)
 | 
				
			||||||
        dim = config.kv_channels
 | 
					        self.dim = config.hidden_size // config.num_attention_heads
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        self.h = nn.ModuleList([QWenBlock(config, i) for i in range(config.num_hidden_layers)])
 | 
					        self.h = nn.ModuleList([QWenBlock(config, i) for i in range(config.num_hidden_layers)])
 | 
				
			||||||
        self.ln_f = RMSNorm(
 | 
					        self.ln_f = RMSNorm(
 | 
				
			||||||
            config.hidden_size,
 | 
					            config.hidden_size,
 | 
				
			||||||
            eps=config.layer_norm_epsilon,
 | 
					            eps=config.layer_norm_epsilon,
 | 
				
			||||||
        )
 | 
					        )
 | 
				
			||||||
 | 
					 | 
				
			||||||
        self.dim = dim
 | 
					 | 
				
			||||||
        self.base = config.rotary_emb_base
 | 
					        self.base = config.rotary_emb_base
 | 
				
			||||||
        inv_freq = 1.0 / (self.base ** (torch.arange(0, dim, 2).float() / dim))
 | 
					        inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float() / self.dim))
 | 
				
			||||||
        self.register_buffer("inv_freq", inv_freq, persistent=False)
 | 
					        self.register_buffer("inv_freq", inv_freq, persistent=False)
 | 
				
			||||||
        self._rotary_pos_emb_cache = None
 | 
					        self._rotary_pos_emb_cache = None
 | 
				
			||||||
        self._seq_len_cached = 0
 | 
					        self._seq_len_cached = 0
 | 
				
			||||||
| 
						 | 
					@ -348,11 +345,14 @@ class QwenRunner:
 | 
				
			||||||
        loss = None
 | 
					        loss = None
 | 
				
			||||||
        if labels is not None:
 | 
					        if labels is not None:
 | 
				
			||||||
            labels = labels.to(lm_logits.device)
 | 
					            labels = labels.to(lm_logits.device)
 | 
				
			||||||
 | 
					            shift_labels = labels[..., 1:].contiguous().view(-1)
 | 
				
			||||||
            shift_logits = lm_logits[..., :-1, :].contiguous()
 | 
					            shift_logits = lm_logits[..., :-1, :].contiguous()
 | 
				
			||||||
            shift_labels = labels[..., 1:].contiguous()
 | 
					            shift_logits = shift_logits.view(-1, shift_logits.size(-1))
 | 
				
			||||||
 | 
					            mask = shift_labels != 0
 | 
				
			||||||
 | 
					            shift_labels = shift_labels[mask]
 | 
				
			||||||
 | 
					            shift_logits = shift_logits[mask]
 | 
				
			||||||
            loss_fct = CrossEntropyLoss()
 | 
					            loss_fct = CrossEntropyLoss()
 | 
				
			||||||
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
 | 
					            loss = loss_fct(shift_logits, shift_labels)
 | 
				
			||||||
 | 
					 | 
				
			||||||
        return lm_logits, loss
 | 
					        return lm_logits, loss
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def prepareInput(self, tokenizer, query, query_assistant, history, system):
 | 
					    def prepareInput(self, tokenizer, query, query_assistant, history, system):
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in New Issue