Update trainer to custom data.

This commit is contained in:
Colin 2024-03-04 21:41:46 +08:00
parent 1622bf3054
commit 9e8e92ae25
4 changed files with 26 additions and 102 deletions

View File

@ -7,8 +7,8 @@
class QWenConfig:
def __init__(self):
self.vocab_size = 4096
self.hidden_size = 1024 # 1024 2048
self.num_hidden_layers = 12 # 12 24
self.hidden_size = 128 # 1024 2048
self.num_hidden_layers = 6 # 12 24
self.num_attention_heads = 8 # 8 16
self.emb_dropout_prob = 0.0
self.attn_dropout_prob = 0.0
@ -20,7 +20,6 @@ class QWenConfig:
self.bf16 = False
self.fp16 = False
self.fp32 = False
self.kv_channels = 128
self.rotary_pct = 1.0
self.rotary_emb_base = 10000
self.use_dynamic_ntk = True

View File

@ -61,7 +61,7 @@ class LitModule(pl.LightningModule):
self.metric_loss.update(loss)
label_mask = labels != -100
label_mask = labels != 0
self.metric_accuracy.update(logits[label_mask], labels[label_mask])
def on_validation_epoch_end(self) -> None:

View File

@ -6,7 +6,8 @@ from typing import Dict, Tuple
import datasets
import pytorch_lightning as pl
import torch
from torch.utils.data import ConcatDataset, DataLoader, Dataset
from torch.utils.data import ConcatDataset, DataLoader, Dataset, random_split, Subset
from transformers import (
BatchEncoding,
DefaultDataCollator,
@ -22,8 +23,6 @@ learning_rate = 0.0001
use_tril_attention_mask = None
precision = "32-true" # "precision:bf16-mixed,16-mixed,32-true"
tokenizer_name_or_path = None
dataset_name = ["/home/colin/develop/dataset/liwu/MNBVC/wiki"]
dataset_name = ["/home/colin/develop/dataset/liwu/MNBVC/wiki/20230198/58.jsonl.gz"]
train_batch_size = 256
val_batch_size = 16
num_proc = 8
@ -34,11 +33,14 @@ seed = 42
class SpecialDataset(Dataset):
def __init__(self, start, end, size=65536):
def __init__(self, start=1, end=4096, size=65536):
self.size = size
self.features = []
a = torch.randint(start, end, [size])
self.data = torch.stack([a, a * 2, a * 3, a * 4]).permute(1, 0)
b = torch.randint(start, end, [size])
c = torch.randint(start, end, [size])
d = torch.randint(start, end, [size])
self.data = torch.stack([a, b, c, d, ((a + b + c + d) / 4).long()]).permute(1, 0)
def __len__(self):
return self.size
@ -47,73 +49,12 @@ class SpecialDataset(Dataset):
output = {}
data = self.data[idx]
output["input_ids"] = data
output["labels"] = data
output["labels"] = data.clone()
output["labels"][:4] = 0
output["token_type_ids"] = torch.zeros(data.shape)
return output
def split_raw_dataset(
raw_dataset: datasets.DatasetDict,
) -> Tuple[datasets.Dataset, datasets.Dataset]:
if "validation" in raw_dataset:
train_dataset, val_dataset = raw_dataset["train"], raw_dataset["validation"]
else:
raw_dataset = raw_dataset["train"].train_test_split(test_size=0.05, seed=seed)
train_dataset, val_dataset = raw_dataset["train"], raw_dataset["test"]
return train_dataset, val_dataset
def process_dataset(dataset: datasets.Dataset, tokenizer: PreTrainedTokenizer) -> datasets.Dataset:
def group_texts(examples: Dict[str, list], block_size: int = 512) -> BatchEncoding:
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
total_length = (total_length // block_size) * block_size
result = {
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
result["labels"] = result["input_ids"].copy()
result = BatchEncoding(result)
return result
def format_inputs(examples):
p = examples["段落"]
mergeLine = ""
for line in p:
mergeLine += line["内容"] + "\n"
return {"text": mergeLine}
def tokenize_inputs(
examples: Dict[str, list],
tokenizer: PreTrainedTokenizer,
column_name: str = "text",
) -> BatchEncoding:
logits = tokenizer(examples[column_name], return_attention_mask=False)
return logits
dataset_column_names = list(dataset.features)
dataset = dataset.map(
partial(format_inputs),
batched=False,
num_proc=num_proc,
remove_columns=dataset_column_names,
)
dataset_column_names = list(dataset.features)
dataset = dataset.map(
partial(tokenize_inputs, tokenizer=tokenizer),
batched=True,
num_proc=num_proc,
remove_columns=dataset_column_names,
)
dataset = dataset.map(
partial(group_texts, block_size=tokenizer.model_max_length),
batched=True,
num_proc=num_proc,
)
return dataset
if __name__ == "__main__":
if tokenizer_name_or_path is None:
tokenizer_name_or_path = model_name
@ -125,26 +66,11 @@ if __name__ == "__main__":
lit_module = LitModule(model_dir, learning_rate, use_tril_attention_mask)
tokenizer = QWenTokenizer("./wit_b64.tiktoken", "./wit_char.tiktoken")
train_dataset_list = []
val_dataset_list = []
for dn in dataset_name:
datanames = dn.split(".")
if datanames[-1] == "gz" and datanames[-2] == "jsonl":
raw_dataset = datasets.load_dataset("json", data_files=dn)
elif datanames[-1] == "json":
raw_dataset = datasets.load_dataset("json", data_files=dn)
else:
raw_dataset = datasets.load_dataset(dn)
train_dataset, val_dataset = split_raw_dataset(raw_dataset)
train_dataset = process_dataset(train_dataset, tokenizer)
val_dataset = process_dataset(val_dataset, tokenizer)
train_dataset_list.append(train_dataset)
val_dataset_list.append(val_dataset)
train_dataset = ConcatDataset(train_dataset_list)
val_dataset = ConcatDataset(val_dataset_list)
train_dataset = SpecialDataset(0, 1000, 65536)
val_dataset = SpecialDataset(1000, 1024, 1024)
raw_dataset = SpecialDataset()
train_idx, val_idx = random_split(list(range(len(raw_dataset))), [0.95, 0.05])
train_dataset = Subset(raw_dataset, train_idx.indices)
val_dataset = Subset(raw_dataset, val_idx.indices)
train_dataloader = DataLoader(
train_dataset,
@ -160,7 +86,6 @@ if __name__ == "__main__":
num_workers=num_proc,
collate_fn=DefaultDataCollator(),
persistent_workers=True,
shuffle=True,
)
torch.set_float32_matmul_precision("medium")

View File

@ -49,9 +49,8 @@ class QWenAttention(nn.Module):
self.split_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.projection_size = config.kv_channels * config.num_attention_heads
self.c_attn = nn.Linear(config.hidden_size, 3 * self.projection_size)
self.c_proj = nn.Linear(config.hidden_size, self.projection_size, bias=not config.no_bias)
self.c_attn = nn.Linear(config.hidden_size, 3 * self.hidden_size)
self.c_proj = nn.Linear(config.hidden_size, self.hidden_size, bias=not config.no_bias)
self.attn_dropout = nn.Dropout(config.attn_dropout_prob)
self.index = index
@ -96,17 +95,15 @@ class QWenModel(nn.Module):
super().__init__()
self.wte = nn.Embedding(config.vocab_size, config.hidden_size)
self.drop = nn.Dropout(config.emb_dropout_prob)
dim = config.kv_channels
self.dim = config.hidden_size // config.num_attention_heads
self.h = nn.ModuleList([QWenBlock(config, i) for i in range(config.num_hidden_layers)])
self.ln_f = RMSNorm(
config.hidden_size,
eps=config.layer_norm_epsilon,
)
self.dim = dim
self.base = config.rotary_emb_base
inv_freq = 1.0 / (self.base ** (torch.arange(0, dim, 2).float() / dim))
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float() / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
self._rotary_pos_emb_cache = None
self._seq_len_cached = 0
@ -348,11 +345,14 @@ class QwenRunner:
loss = None
if labels is not None:
labels = labels.to(lm_logits.device)
shift_labels = labels[..., 1:].contiguous().view(-1)
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
shift_logits = shift_logits.view(-1, shift_logits.size(-1))
mask = shift_labels != 0
shift_labels = shift_labels[mask]
shift_logits = shift_logits[mask]
loss_fct = CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
loss = loss_fct(shift_logits, shift_labels)
return lm_logits, loss
def prepareInput(self, tokenizer, query, query_assistant, history, system):