Update trainer to custom data.
This commit is contained in:
parent
1622bf3054
commit
9e8e92ae25
|
@ -7,8 +7,8 @@
|
|||
class QWenConfig:
|
||||
def __init__(self):
|
||||
self.vocab_size = 4096
|
||||
self.hidden_size = 1024 # 1024 2048
|
||||
self.num_hidden_layers = 12 # 12 24
|
||||
self.hidden_size = 128 # 1024 2048
|
||||
self.num_hidden_layers = 6 # 12 24
|
||||
self.num_attention_heads = 8 # 8 16
|
||||
self.emb_dropout_prob = 0.0
|
||||
self.attn_dropout_prob = 0.0
|
||||
|
@ -20,7 +20,6 @@ class QWenConfig:
|
|||
self.bf16 = False
|
||||
self.fp16 = False
|
||||
self.fp32 = False
|
||||
self.kv_channels = 128
|
||||
self.rotary_pct = 1.0
|
||||
self.rotary_emb_base = 10000
|
||||
self.use_dynamic_ntk = True
|
||||
|
|
|
@ -61,7 +61,7 @@ class LitModule(pl.LightningModule):
|
|||
|
||||
self.metric_loss.update(loss)
|
||||
|
||||
label_mask = labels != -100
|
||||
label_mask = labels != 0
|
||||
self.metric_accuracy.update(logits[label_mask], labels[label_mask])
|
||||
|
||||
def on_validation_epoch_end(self) -> None:
|
||||
|
|
101
wit/lit_train.py
101
wit/lit_train.py
|
@ -6,7 +6,8 @@ from typing import Dict, Tuple
|
|||
import datasets
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from torch.utils.data import ConcatDataset, DataLoader, Dataset
|
||||
from torch.utils.data import ConcatDataset, DataLoader, Dataset, random_split, Subset
|
||||
|
||||
from transformers import (
|
||||
BatchEncoding,
|
||||
DefaultDataCollator,
|
||||
|
@ -22,8 +23,6 @@ learning_rate = 0.0001
|
|||
use_tril_attention_mask = None
|
||||
precision = "32-true" # "precision:bf16-mixed,16-mixed,32-true"
|
||||
tokenizer_name_or_path = None
|
||||
dataset_name = ["/home/colin/develop/dataset/liwu/MNBVC/wiki"]
|
||||
dataset_name = ["/home/colin/develop/dataset/liwu/MNBVC/wiki/20230198/58.jsonl.gz"]
|
||||
train_batch_size = 256
|
||||
val_batch_size = 16
|
||||
num_proc = 8
|
||||
|
@ -34,11 +33,14 @@ seed = 42
|
|||
|
||||
|
||||
class SpecialDataset(Dataset):
|
||||
def __init__(self, start, end, size=65536):
|
||||
def __init__(self, start=1, end=4096, size=65536):
|
||||
self.size = size
|
||||
self.features = []
|
||||
a = torch.randint(start, end, [size])
|
||||
self.data = torch.stack([a, a * 2, a * 3, a * 4]).permute(1, 0)
|
||||
b = torch.randint(start, end, [size])
|
||||
c = torch.randint(start, end, [size])
|
||||
d = torch.randint(start, end, [size])
|
||||
self.data = torch.stack([a, b, c, d, ((a + b + c + d) / 4).long()]).permute(1, 0)
|
||||
|
||||
def __len__(self):
|
||||
return self.size
|
||||
|
@ -47,73 +49,12 @@ class SpecialDataset(Dataset):
|
|||
output = {}
|
||||
data = self.data[idx]
|
||||
output["input_ids"] = data
|
||||
output["labels"] = data
|
||||
output["labels"] = data.clone()
|
||||
output["labels"][:4] = 0
|
||||
output["token_type_ids"] = torch.zeros(data.shape)
|
||||
return output
|
||||
|
||||
|
||||
def split_raw_dataset(
|
||||
raw_dataset: datasets.DatasetDict,
|
||||
) -> Tuple[datasets.Dataset, datasets.Dataset]:
|
||||
if "validation" in raw_dataset:
|
||||
train_dataset, val_dataset = raw_dataset["train"], raw_dataset["validation"]
|
||||
else:
|
||||
raw_dataset = raw_dataset["train"].train_test_split(test_size=0.05, seed=seed)
|
||||
train_dataset, val_dataset = raw_dataset["train"], raw_dataset["test"]
|
||||
return train_dataset, val_dataset
|
||||
|
||||
|
||||
def process_dataset(dataset: datasets.Dataset, tokenizer: PreTrainedTokenizer) -> datasets.Dataset:
|
||||
def group_texts(examples: Dict[str, list], block_size: int = 512) -> BatchEncoding:
|
||||
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
|
||||
total_length = len(concatenated_examples[list(examples.keys())[0]])
|
||||
total_length = (total_length // block_size) * block_size
|
||||
result = {
|
||||
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
|
||||
for k, t in concatenated_examples.items()
|
||||
}
|
||||
result["labels"] = result["input_ids"].copy()
|
||||
result = BatchEncoding(result)
|
||||
return result
|
||||
|
||||
def format_inputs(examples):
|
||||
p = examples["段落"]
|
||||
mergeLine = ""
|
||||
for line in p:
|
||||
mergeLine += line["内容"] + "\n"
|
||||
return {"text": mergeLine}
|
||||
|
||||
def tokenize_inputs(
|
||||
examples: Dict[str, list],
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
column_name: str = "text",
|
||||
) -> BatchEncoding:
|
||||
logits = tokenizer(examples[column_name], return_attention_mask=False)
|
||||
return logits
|
||||
|
||||
dataset_column_names = list(dataset.features)
|
||||
dataset = dataset.map(
|
||||
partial(format_inputs),
|
||||
batched=False,
|
||||
num_proc=num_proc,
|
||||
remove_columns=dataset_column_names,
|
||||
)
|
||||
dataset_column_names = list(dataset.features)
|
||||
dataset = dataset.map(
|
||||
partial(tokenize_inputs, tokenizer=tokenizer),
|
||||
batched=True,
|
||||
num_proc=num_proc,
|
||||
remove_columns=dataset_column_names,
|
||||
)
|
||||
dataset = dataset.map(
|
||||
partial(group_texts, block_size=tokenizer.model_max_length),
|
||||
batched=True,
|
||||
num_proc=num_proc,
|
||||
)
|
||||
|
||||
return dataset
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if tokenizer_name_or_path is None:
|
||||
tokenizer_name_or_path = model_name
|
||||
|
@ -125,26 +66,11 @@ if __name__ == "__main__":
|
|||
lit_module = LitModule(model_dir, learning_rate, use_tril_attention_mask)
|
||||
|
||||
tokenizer = QWenTokenizer("./wit_b64.tiktoken", "./wit_char.tiktoken")
|
||||
train_dataset_list = []
|
||||
val_dataset_list = []
|
||||
for dn in dataset_name:
|
||||
datanames = dn.split(".")
|
||||
if datanames[-1] == "gz" and datanames[-2] == "jsonl":
|
||||
raw_dataset = datasets.load_dataset("json", data_files=dn)
|
||||
elif datanames[-1] == "json":
|
||||
raw_dataset = datasets.load_dataset("json", data_files=dn)
|
||||
else:
|
||||
raw_dataset = datasets.load_dataset(dn)
|
||||
train_dataset, val_dataset = split_raw_dataset(raw_dataset)
|
||||
train_dataset = process_dataset(train_dataset, tokenizer)
|
||||
val_dataset = process_dataset(val_dataset, tokenizer)
|
||||
train_dataset_list.append(train_dataset)
|
||||
val_dataset_list.append(val_dataset)
|
||||
train_dataset = ConcatDataset(train_dataset_list)
|
||||
val_dataset = ConcatDataset(val_dataset_list)
|
||||
|
||||
train_dataset = SpecialDataset(0, 1000, 65536)
|
||||
val_dataset = SpecialDataset(1000, 1024, 1024)
|
||||
raw_dataset = SpecialDataset()
|
||||
train_idx, val_idx = random_split(list(range(len(raw_dataset))), [0.95, 0.05])
|
||||
train_dataset = Subset(raw_dataset, train_idx.indices)
|
||||
val_dataset = Subset(raw_dataset, val_idx.indices)
|
||||
|
||||
train_dataloader = DataLoader(
|
||||
train_dataset,
|
||||
|
@ -160,7 +86,6 @@ if __name__ == "__main__":
|
|||
num_workers=num_proc,
|
||||
collate_fn=DefaultDataCollator(),
|
||||
persistent_workers=True,
|
||||
shuffle=True,
|
||||
)
|
||||
|
||||
torch.set_float32_matmul_precision("medium")
|
||||
|
|
|
@ -49,9 +49,8 @@ class QWenAttention(nn.Module):
|
|||
self.split_size = config.hidden_size
|
||||
self.num_heads = config.num_attention_heads
|
||||
self.head_dim = self.hidden_size // self.num_heads
|
||||
self.projection_size = config.kv_channels * config.num_attention_heads
|
||||
self.c_attn = nn.Linear(config.hidden_size, 3 * self.projection_size)
|
||||
self.c_proj = nn.Linear(config.hidden_size, self.projection_size, bias=not config.no_bias)
|
||||
self.c_attn = nn.Linear(config.hidden_size, 3 * self.hidden_size)
|
||||
self.c_proj = nn.Linear(config.hidden_size, self.hidden_size, bias=not config.no_bias)
|
||||
self.attn_dropout = nn.Dropout(config.attn_dropout_prob)
|
||||
self.index = index
|
||||
|
||||
|
@ -96,17 +95,15 @@ class QWenModel(nn.Module):
|
|||
super().__init__()
|
||||
self.wte = nn.Embedding(config.vocab_size, config.hidden_size)
|
||||
self.drop = nn.Dropout(config.emb_dropout_prob)
|
||||
dim = config.kv_channels
|
||||
self.dim = config.hidden_size // config.num_attention_heads
|
||||
|
||||
self.h = nn.ModuleList([QWenBlock(config, i) for i in range(config.num_hidden_layers)])
|
||||
self.ln_f = RMSNorm(
|
||||
config.hidden_size,
|
||||
eps=config.layer_norm_epsilon,
|
||||
)
|
||||
|
||||
self.dim = dim
|
||||
self.base = config.rotary_emb_base
|
||||
inv_freq = 1.0 / (self.base ** (torch.arange(0, dim, 2).float() / dim))
|
||||
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float() / self.dim))
|
||||
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
||||
self._rotary_pos_emb_cache = None
|
||||
self._seq_len_cached = 0
|
||||
|
@ -348,11 +345,14 @@ class QwenRunner:
|
|||
loss = None
|
||||
if labels is not None:
|
||||
labels = labels.to(lm_logits.device)
|
||||
shift_labels = labels[..., 1:].contiguous().view(-1)
|
||||
shift_logits = lm_logits[..., :-1, :].contiguous()
|
||||
shift_labels = labels[..., 1:].contiguous()
|
||||
shift_logits = shift_logits.view(-1, shift_logits.size(-1))
|
||||
mask = shift_labels != 0
|
||||
shift_labels = shift_labels[mask]
|
||||
shift_logits = shift_logits[mask]
|
||||
loss_fct = CrossEntropyLoss()
|
||||
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
||||
|
||||
loss = loss_fct(shift_logits, shift_labels)
|
||||
return lm_logits, loss
|
||||
|
||||
def prepareInput(self, tokenizer, query, query_assistant, history, system):
|
||||
|
|
Loading…
Reference in New Issue