Apply meaning data train.

This commit is contained in:
Colin 2024-03-15 11:16:13 +08:00
parent 0ae63298b2
commit 9feaafcb7a
2 changed files with 40 additions and 27 deletions

View File

@ -31,17 +31,17 @@ class MeaningMap: # 16777216 1048576 8192
print("Disk cache miss, build new one.")
mm = np.empty((size, max_subitem), dtype=np.int32)
total_level = int(math.log(size / vocab_size, max_subitem))
# total_level = int(math.log(size / vocab_size, max_subitem))
start = [0]
end = [vocab_size]
shift = vocab_size
for i in range(total_level):
shift = end[-1]
start.append(end[-1])
end.append(shift * self.max_subitem)
start.append(end[-1])
end.append(size)
# start = [0]
# end = [vocab_size]
# shift = vocab_size
# for i in range(total_level):
# shift = end[-1]
# start.append(end[-1])
# end.append(shift * self.max_subitem)
# start.append(end[-1])
# end.append(size)
index = np.arange(0, size)
mm = np.random.random((size, max_subitem))
@ -108,7 +108,18 @@ class MeaningDataset(Dataset):
self.data = []
meanings = np.random.randint(start, end, size=(size))
for m in meanings:
self.data.append(self.mm.GetSequence(m))
sq = self.mm.GetSequence(m)
if len(sq) > 1:
self.data.append(sq)
left = size - len(self.data)
while True:
if left <= 0:
break
index = np.random.randint(start, end)
sq = self.mm.GetSequence(index)
if len(sq) > 1:
self.data.append(sq)
left = left - 1
def __len__(self):
return self.size

View File

@ -8,10 +8,6 @@ import pytorch_lightning as pl
import torch
from torch.utils.data import ConcatDataset, DataLoader, Dataset, random_split, Subset
from transformers import (
DefaultDataCollator,
set_seed,
)
from lit_module import LitModule
from tokenization_qwen import QWenTokenizer
from logger import TBLogger
@ -24,7 +20,7 @@ pretrain_model_name = None # "qwen/Qwen-1_8B-Chat"
learning_rate = 0.0001
use_tril_attention_mask = None
precision = "32-true" # "precision:bf16-mixed,16-mixed,32-true"
train_batch_size = 256
train_batch_size = 1
val_batch_size = 1
num_proc = 8
max_epochs = 1000
@ -35,23 +31,30 @@ vocab_size = 256
if __name__ == "__main__":
set_seed(seed)
torch.manual_seed(seed)
config = ModelConfig()
config.vocab_size = vocab_size
config.hidden_size = 128 # 128 1024 2048 32
config.num_hidden_layers = 6 # 6 12 24 3
config.num_attention_heads = 8 # 8 8 16
config.hidden_size = 1024 # 128 1024 2048 32
config.num_hidden_layers = 12 # 6 12 24 3
config.num_attention_heads = 16 # 8 8 16
lit_module = LitModule(pretrain_model_name, learning_rate, config, use_tril_attention_mask)
tokenizer = QWenTokenizer("./wit_b64.tiktoken", "./wit_char.tiktoken")
raw_dataset = SpecialDataset()
# raw_dataset = MeaningDataset(start=65536, end=262133, size=32768, max_subitem=4, vocab_size=vocab_size)
train_dataset, val_dataset = random_split(raw_dataset, [0.95, 0.05])
# raw_dataset = SpecialDataset()
level_scale = 4
start = vocab_size * level_scale * level_scale
raw_dataset = MeaningDataset(
start=start,
end=start * level_scale,
size=start * level_scale * level_scale,
max_subitem=level_scale,
vocab_size=vocab_size,
)
train_dataset, val_dataset = random_split(raw_dataset, [0.95, 0.05])
it = iter(train_dataset)
print("data samples:")
for i in range(10):
@ -61,7 +64,6 @@ if __name__ == "__main__":
train_dataset,
batch_size=train_batch_size,
num_workers=num_proc,
collate_fn=DefaultDataCollator(),
persistent_workers=True,
shuffle=True,
)
@ -69,13 +71,13 @@ if __name__ == "__main__":
val_dataset,
batch_size=val_batch_size,
num_workers=num_proc,
collate_fn=DefaultDataCollator(),
persistent_workers=True,
)
torch.set_float32_matmul_precision("medium")
lit_trainer = pl.Trainer(
accelerator="gpu",
# devices=[0],
precision=precision,
logger=TBLogger("./", default_hp_metric=False),
strategy=strategy,