diff --git a/unsuper/Readme.md b/unsuper/Readme.md index 3b5ef4e..ff7f156 100644 --- a/unsuper/Readme.md +++ b/unsuper/Readme.md @@ -2,4 +2,8 @@ 1. 重复的权重,虽然权重看起来都一样,但是有稍微的不同,不是完全一样 2. 3x3太小了导致了样本的信噪比太低,大部分的样本切出来都是0 2. 5x5的时候会有网格状重复 -3. 7x7的时候边框区域问题 \ No newline at end of file +3. 7x7的时候边框区域问题 + +1. 输入的信噪比 +2. loss函数的设计 +3. grad信息的应用 \ No newline at end of file diff --git a/unsuper/minist.py b/unsuper/minist.py index 77b750c..8be7062 100644 --- a/unsuper/minist.py +++ b/unsuper/minist.py @@ -30,7 +30,7 @@ test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, s class ConvNet(nn.Module): def __init__(self): super(ConvNet, self).__init__() - self.conv1 = nn.Conv2d(1, 8, 3, 1, 0) + self.conv1 = nn.Conv2d(1, 8, 5, 1, 0) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(8, 1, 5, 1, 0) self.fc1 = nn.Linear(1 * 4 * 4, 10) @@ -105,27 +105,11 @@ model = ConvNet().to(device) model.train() # Train the model unsuper -epochs = 1 +epochs = 2 n_total_steps = len(train_loader) for epoch in range(epochs): for i, (images, labels) in enumerate(train_loader): images = images.to(device) - - # # images = images[:,:,12:15,12:15] - # kernel_size = 3 - # mean_filter = torch.ones((1, 1, kernel_size, kernel_size), device=device) / (kernel_size * kernel_size) - # images = F.conv2d(images, mean_filter, padding=1) - # images = F.conv2d(images, mean_filter, padding=1) - # images = F.conv2d(images, mean_filter, padding=1) - # # images = F.conv2d(images, mean_filter, padding=1) - # # images = F.conv2d(images, mean_filter, padding=1) - - # images = torch.rand(3, 3).to(device=device) - # # images[1, 1] = images[1, 1] * 2 - # # images[0, 0] = images[1, 1] * 2 - # # images[2, 2] = images[1, 1] * 2 - # images = images.view(1, 1, 3, 3) - outputs = model.forward_unsuper(images) outputs = outputs.permute(0, 2, 3, 1) # 64 8 24 24 -> 64 24 24 8 @@ -137,9 +121,10 @@ for epoch in range(epochs): max = torch.expand_copy(max.reshape(-1, 1), sample.shape) all = range(0, sample.shape[0]) - ratio_max = abs / mean - ratio_nor = (max - abs) / max - ratio_nor[all, max_index] = ratio_max[all, max_index].clone() + # ratio_max = abs / mean + # ratio_nor = (max - abs) / max + ratio_nor = torch.pow(abs / mean, 4) + # ratio_nor[all, max_index] = ratio_max[all, max_index].clone() ratio_nor = torch.where(torch.isnan(ratio_nor), 1.0, ratio_nor) label = sample * ratio_nor @@ -147,7 +132,7 @@ for epoch in range(epochs): model.conv1.weight.grad = None loss.backward() - model.conv1.weight.data = model.conv1.weight.data - model.conv1.weight.grad * 100 + model.conv1.weight.data = model.conv1.weight.data - model.conv1.weight.grad * 10000 if (i + 1) % 100 == 0: print(f"Epoch [{epoch+1}/{epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.8f}") @@ -158,6 +143,8 @@ show.DumpTensorToImage(g.view(-1, g.shape[2], g.shape[3]).cpu(), "conv1_weight_g w = model.conv1.weight.data show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]), "conv1_weight_update.png") +# model.conv1.weight.data = torch.rand(model.conv1.weight.data.shape, device=device) + # loader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False) # images, labels = next(iter(loader)) # images = images.to(device)