Add mapping output.

This commit is contained in:
Colin 2024-04-02 19:59:05 +08:00
parent e2b48c0ab4
commit a15e55bead
2 changed files with 45 additions and 16 deletions

View File

@ -10,7 +10,7 @@ import numpy as np
from torch.utils.data import BatchSampler from torch.utils.data import BatchSampler
class MeaningMap: # 16777216 1048576 8192 class MeaningMap:
def __init__(self, size=1048576, vocab_size=4096, max_subitem=10): def __init__(self, size=1048576, vocab_size=4096, max_subitem=10):
self.size = size self.size = size
@ -20,14 +20,21 @@ class MeaningMap: # 16777216 1048576 8192
path = "./data/" path = "./data/"
file = "structured_language_" + str(size) + "_" + str(vocab_size) + "_" + str(max_subitem) file = "structured_language_" + str(size) + "_" + str(vocab_size) + "_" + str(max_subitem)
file = path + file file = path + file
file_map = file + "_map" + ".npy"
file_start = file + "_start" + ".npy" file_start = file + "_start" + ".npy"
file_len = file + "_len" + ".npy" file_len = file + "_len" + ".npy"
file_data = file + "_data" + ".npy" file_data = file + "_data" + ".npy"
if not os.path.exists(path): if not os.path.exists(path):
os.mkdir(path) os.mkdir(path)
if os.path.exists(file_start) and os.path.exists(file_len) and os.path.exists(file_data): if (
os.path.exists(file_start)
and os.path.exists(file_len)
and os.path.exists(file_data)
and os.path.exists(file_map)
):
print("Load from disk cache: " + file) print("Load from disk cache: " + file)
self.ms_map = np.load(file_map)
self.ms_data = np.load(file_data) self.ms_data = np.load(file_data)
self.ms_start = np.load(file_start) self.ms_start = np.load(file_start)
self.ms_len = np.load(file_len) self.ms_len = np.load(file_len)
@ -77,21 +84,30 @@ class MeaningMap: # 16777216 1048576 8192
index = index + len(ma) index = index + len(ma)
ms_data = list(chain(*ms)) ms_data = list(chain(*ms))
np.save(file_map, np.array(mm).astype(np.int32))
np.save(file_data, np.array(ms_data).astype(np.int32)) np.save(file_data, np.array(ms_data).astype(np.int32))
np.save(file_start, np.array(ms_start).astype(np.int32)) np.save(file_start, np.array(ms_start).astype(np.int32))
np.save(file_len, np.array(ms_len).astype(np.int32)) np.save(file_len, np.array(ms_len).astype(np.int32))
self.ms_map = mm
self.ms_data = ms_data self.ms_data = ms_data
self.ms_start = ms_start self.ms_start = ms_start
self.ms_len = ms_len self.ms_len = ms_len
print("Disk cache build end.") print("Disk cache build end.")
def GetSequence(self, meaning): def get_sequence(self, meaning):
start = self.ms_start[meaning] start = self.ms_start[meaning]
len = self.ms_len[meaning] len = self.ms_len[meaning]
return self.ms_data[start : start + len] return self.ms_data[start : start + len]
def MaxLength(self): def get_mapping(self, meaning):
mapping = {}
ms = self.ms_map[meaning]
for m in ms[ms > 0].tolist():
mapping[m] = self.get_mapping(m) if m >= self.vocab_size else m
return mapping
def max_length(self):
return max(self.ms_len) return max(self.ms_len)
@ -108,19 +124,23 @@ class MeaningDataset(Dataset):
seed=42, seed=42,
data=None, data=None,
length=None, length=None,
mapping=None,
): ):
if data != None and length != None: if data != None and length != None and mapping != None:
self.data = data self.data = data
self.length = length self.length = length
self.mapping = mapping
return return
np.random.seed(seed) np.random.seed(seed)
mm = MeaningMap(size=end, vocab_size=vocab_size, max_subitem=max_subitem) # 1048576 mm = MeaningMap(size=end, vocab_size=vocab_size, max_subitem=max_subitem) # 1048576
self.mapping = []
self.data = [] self.data = []
self.length = [] self.length = []
meanings = np.random.randint(start, end, size=(size)) meanings = np.random.randint(start, end, size=(size))
for m in meanings: for m in meanings:
sq = mm.GetSequence(m) sq = mm.get_sequence(m)
if len(sq) >= min_seq_len: if len(sq) >= min_seq_len:
self.mapping.append(mm.get_mapping(m))
self.data.append(sq) self.data.append(sq)
self.length.append(len(sq)) self.length.append(len(sq))
@ -146,7 +166,7 @@ class MeaningDataset(Dataset):
output["token_type_ids"] = torch.zeros(data.shape) output["token_type_ids"] = torch.zeros(data.shape)
return output return output
def GetBatch(self, index_list): # must equal sequence length def get_batch(self, index_list): # must equal sequence length
data = [self.data[i] for i in index_list] data = [self.data[i] for i in index_list]
output = {} output = {}
data = torch.tensor(np.stack(data, axis=0)).long() data = torch.tensor(np.stack(data, axis=0)).long()
@ -155,13 +175,17 @@ class MeaningDataset(Dataset):
output["token_type_ids"] = torch.zeros(data.shape) output["token_type_ids"] = torch.zeros(data.shape)
return output return output
def Split(self, ratio): def get_mapping_batch(self, index_list):
return [self.mapping[i] for i in index_list]
def split(self, ratio):
l = len(self.data) l = len(self.data)
middle = int(l * ratio) middle = int(l * ratio)
d_shuffle = self.data.copy() d_shuffle = self.data.copy()
l_shuffle = self.length.copy() l_shuffle = self.length.copy()
md1 = MeaningDataset(data=d_shuffle[:middle], length=l_shuffle[:middle]) m_shuffle = self.mapping.copy()
md2 = MeaningDataset(data=d_shuffle[middle:], length=l_shuffle[middle:]) md1 = MeaningDataset(data=d_shuffle[:middle], length=l_shuffle[:middle], mapping=m_shuffle[:middle])
md2 = MeaningDataset(data=d_shuffle[middle:], length=l_shuffle[middle:], mapping=m_shuffle[middle:])
return md1, md2 return md1, md2
@ -195,6 +219,7 @@ class BatchGroupMeaningDataloader(Dataset):
batch = len(gs[l]) // batch_size batch = len(gs[l]) // batch_size
new = gs[l][0 : batch * batch_size].reshape(batch, batch_size) new = gs[l][0 : batch * batch_size].reshape(batch, batch_size)
index = np.concatenate((index, new), axis=0) index = np.concatenate((index, new), axis=0)
if shuffle: if shuffle:
index_shuffle = np.arange(0, index.shape[0]) index_shuffle = np.arange(0, index.shape[0])
np.random.shuffle(index_shuffle) np.random.shuffle(index_shuffle)
@ -207,22 +232,26 @@ class BatchGroupMeaningDataloader(Dataset):
return len(self.indexBatch) return len(self.indexBatch)
def __getitem__(self, idx): def __getitem__(self, idx):
# print("get idx" + str(idx)) return self.dataset.get_batch(self.indexBatch[idx])
return self.dataset.GetBatch(self.indexBatch[idx])
def mapping(self, idx):
return self.dataset.get_mapping_batch(self.indexBatch[idx])
if __name__ == "__main__": if __name__ == "__main__":
md = MeaningDataset(4096, 8100, size=1024) md = MeaningDataset(1024, 115200, vocab_size=1024, size=1024)
train, val = md.Split(0.95) train, val = md.split(0.95)
dl = BatchGroupMeaningDataloader(train, 32) dl = BatchGroupMeaningDataloader(train, 2)
length = len(dl) length = len(dl)
it = iter(dl) it = iter(dl)
ne1 = next(it) ne1 = next(it)
ne2 = next(it) ne2 = next(it)
ne3 = next(it) ne3 = next(it)
map = dl.mapping(0)
dl = DataLoader( dl = DataLoader(
train, train,
num_workers=1, num_workers=1,

View File

@ -54,7 +54,7 @@ if __name__ == "__main__":
end = start * level_ratio end = start * level_ratio
size = int(vocab_size * (level_ratio**dataset_level)) size = int(vocab_size * (level_ratio**dataset_level))
raw_dataset = MeaningDataset(start, end, size, vocab_size, level_ratio) raw_dataset = MeaningDataset(start, end, size, vocab_size, level_ratio)
train_dataset, val_dataset = raw_dataset.Split(0.9) train_dataset, val_dataset = raw_dataset.split(0.9)
train_dataloader = BatchGroupMeaningDataloader(train_dataset, train_batch_size) train_dataloader = BatchGroupMeaningDataloader(train_dataset, train_batch_size)
val_dataloader = BatchGroupMeaningDataloader(val_dataset, val_batch_size) val_dataloader = BatchGroupMeaningDataloader(val_dataset, val_batch_size)
# it = iter(train_dataloader) # it = iter(train_dataloader)