Remote return_dict config. Remove unuse files.
This commit is contained in:
parent
90cb0fe236
commit
a8f2fbbff5
10
qwen/demo.py
10
qwen/demo.py
|
@ -14,7 +14,7 @@ model_dir = snapshot_download("qwen/Qwen-1_8B-Chat")
|
|||
# model_dir = "/home/colin/.cache/modelscope/hub/qwen/Qwen-1_8B-Chat"
|
||||
|
||||
config, kwargs = AutoConfig.from_pretrained(
|
||||
model_dir,
|
||||
"./",
|
||||
return_unused_kwargs=True,
|
||||
trust_remote_code=True,
|
||||
code_revision=None,
|
||||
|
@ -25,15 +25,15 @@ model = QWenLMHeadModel(config)
|
|||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
|
||||
model = model.from_pretrained(
|
||||
model_dir, device_map="auto", trust_remote_code=True
|
||||
model_dir, config=config, device_map="auto", trust_remote_code=True
|
||||
).train()
|
||||
# model.train()
|
||||
# model.zero_grad()
|
||||
|
||||
# 可指定不同的生成长度、top_p等相关超参
|
||||
model.generation_config = GenerationConfig.from_pretrained(
|
||||
model_dir, trust_remote_code=True
|
||||
)
|
||||
# model.generation_config = GenerationConfig.from_pretrained(
|
||||
# model_dir, trust_remote_code=True
|
||||
# )
|
||||
|
||||
# 第一轮对话
|
||||
response, history = model.chat(tokenizer, "你好", history=None)
|
||||
|
|
|
@ -1,52 +0,0 @@
|
|||
{
|
||||
"fp16": {
|
||||
"enabled": "auto",
|
||||
"loss_scale": 0,
|
||||
"loss_scale_window": 1000,
|
||||
"initial_scale_power": 16,
|
||||
"hysteresis": 2,
|
||||
"min_loss_scale": 1
|
||||
},
|
||||
"bf16": {
|
||||
"enabled": "auto"
|
||||
},
|
||||
"optimizer": {
|
||||
"type": "AdamW",
|
||||
"params": {
|
||||
"lr": "auto",
|
||||
"betas": "auto",
|
||||
"eps": "auto",
|
||||
"weight_decay": "auto"
|
||||
}
|
||||
},
|
||||
|
||||
"scheduler": {
|
||||
"type": "WarmupLR",
|
||||
"params": {
|
||||
"warmup_min_lr": "auto",
|
||||
"warmup_max_lr": "auto",
|
||||
"warmup_num_steps": "auto"
|
||||
}
|
||||
},
|
||||
|
||||
"zero_optimization": {
|
||||
"stage": 2,
|
||||
"offload_optimizer": {
|
||||
"device": "none",
|
||||
"pin_memory": true
|
||||
},
|
||||
"allgather_partitions": true,
|
||||
"allgather_bucket_size": 2e8,
|
||||
"overlap_comm": true,
|
||||
"reduce_scatter": true,
|
||||
"reduce_bucket_size": 2e8,
|
||||
"contiguous_gradients": true
|
||||
},
|
||||
|
||||
"gradient_accumulation_steps": "auto",
|
||||
"gradient_clipping": "auto",
|
||||
"steps_per_print": 100,
|
||||
"train_batch_size": "auto",
|
||||
"train_micro_batch_size_per_gpu": "auto",
|
||||
"wall_clock_breakdown": false
|
||||
}
|
|
@ -1,59 +0,0 @@
|
|||
{
|
||||
"fp16": {
|
||||
"enabled": "auto",
|
||||
"loss_scale": 0,
|
||||
"loss_scale_window": 1000,
|
||||
"initial_scale_power": 16,
|
||||
"hysteresis": 2,
|
||||
"min_loss_scale": 1
|
||||
},
|
||||
"bf16": {
|
||||
"enabled": "auto"
|
||||
},
|
||||
"optimizer": {
|
||||
"type": "AdamW",
|
||||
"params": {
|
||||
"lr": "auto",
|
||||
"betas": "auto",
|
||||
"eps": "auto",
|
||||
"weight_decay": "auto"
|
||||
}
|
||||
},
|
||||
|
||||
"scheduler": {
|
||||
"type": "WarmupLR",
|
||||
"params": {
|
||||
"warmup_min_lr": "auto",
|
||||
"warmup_max_lr": "auto",
|
||||
"warmup_num_steps": "auto"
|
||||
}
|
||||
},
|
||||
|
||||
"zero_optimization": {
|
||||
"stage": 3,
|
||||
"offload_optimizer": {
|
||||
"device": "none",
|
||||
"pin_memory": true
|
||||
},
|
||||
"offload_param": {
|
||||
"device": "none",
|
||||
"pin_memory": true
|
||||
},
|
||||
"overlap_comm": true,
|
||||
"contiguous_gradients": true,
|
||||
"sub_group_size": 1e9,
|
||||
"reduce_bucket_size": "auto",
|
||||
"stage3_prefetch_bucket_size": "auto",
|
||||
"stage3_param_persistence_threshold": "auto",
|
||||
"stage3_max_live_parameters": 1e9,
|
||||
"stage3_max_reuse_distance": 1e9,
|
||||
"stage3_gather_16bit_weights_on_model_save": true
|
||||
},
|
||||
|
||||
"gradient_accumulation_steps": "auto",
|
||||
"gradient_clipping": "auto",
|
||||
"steps_per_print": 100,
|
||||
"train_batch_size": "auto",
|
||||
"train_micro_batch_size_per_gpu": "auto",
|
||||
"wall_clock_breakdown": false
|
||||
}
|
|
@ -1,90 +0,0 @@
|
|||
#!/bin/bash
|
||||
export CUDA_DEVICE_MAX_CONNECTIONS=1
|
||||
DIR=`pwd`
|
||||
|
||||
# Guide:
|
||||
# This script supports distributed training on multi-gpu workers (as well as single-worker training).
|
||||
# Please set the options below according to the comments.
|
||||
# For multi-gpu workers training, these options should be manually set for each worker.
|
||||
# After setting the options, please run the script on each worker.
|
||||
|
||||
# Number of GPUs per GPU worker
|
||||
GPUS_PER_NODE=$(python -c 'import torch; print(torch.cuda.device_count())')
|
||||
|
||||
# Number of GPU workers, for single-worker training, please set to 1
|
||||
NNODES=${NNODES:-1}
|
||||
|
||||
# The rank of this worker, should be in {0, ..., WORKER_CNT-1}, for single-worker training, please set to 0
|
||||
NODE_RANK=${NODE_RANK:-0}
|
||||
|
||||
# The ip address of the rank-0 worker, for single-worker training, please set to localhost
|
||||
MASTER_ADDR=${MASTER_ADDR:localhost}
|
||||
|
||||
# The port for communication
|
||||
MASTER_PORT=${MASTER_PORT:-6001}
|
||||
|
||||
MODEL="Qwen/Qwen-7B" # Set the path if you do not want to load from huggingface directly
|
||||
# ATTENTION: specify the path to your training data, which should be a json file consisting of a list of conversations.
|
||||
# See the section for finetuning in README for more information.
|
||||
DATA="path_to_data"
|
||||
|
||||
function usage() {
|
||||
echo '
|
||||
Usage: bash finetune/finetune_ds.sh [-m MODEL_PATH] [-d DATA_PATH]
|
||||
'
|
||||
}
|
||||
|
||||
while [[ "$1" != "" ]]; do
|
||||
case $1 in
|
||||
-m | --model )
|
||||
shift
|
||||
MODEL=$1
|
||||
;;
|
||||
-d | --data )
|
||||
shift
|
||||
DATA=$1
|
||||
;;
|
||||
-h | --help )
|
||||
usage
|
||||
exit 0
|
||||
;;
|
||||
* )
|
||||
echo "Unknown argument ${1}"
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
shift
|
||||
done
|
||||
|
||||
DISTRIBUTED_ARGS="
|
||||
--nproc_per_node $GPUS_PER_NODE \
|
||||
--nnodes $NNODES \
|
||||
--node_rank $NODE_RANK \
|
||||
--master_addr $MASTER_ADDR \
|
||||
--master_port $MASTER_PORT
|
||||
"
|
||||
|
||||
torchrun $DISTRIBUTED_ARGS finetune.py \
|
||||
--model_name_or_path $MODEL \
|
||||
--data_path $DATA \
|
||||
--bf16 True \
|
||||
--output_dir output_qwen \
|
||||
--num_train_epochs 5 \
|
||||
--per_device_train_batch_size 1 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 16 \
|
||||
--evaluation_strategy "no" \
|
||||
--save_strategy "steps" \
|
||||
--save_steps 1000 \
|
||||
--save_total_limit 10 \
|
||||
--learning_rate 1e-5 \
|
||||
--weight_decay 0.1 \
|
||||
--adam_beta2 0.95 \
|
||||
--warmup_ratio 0.01 \
|
||||
--lr_scheduler_type "cosine" \
|
||||
--logging_steps 1 \
|
||||
--report_to "none" \
|
||||
--model_max_length 512 \
|
||||
--gradient_checkpointing True \
|
||||
--lazy_preprocess True \
|
||||
--deepspeed finetune/ds_config_zero3.json
|
|
@ -1,96 +0,0 @@
|
|||
#!/bin/bash
|
||||
export CUDA_DEVICE_MAX_CONNECTIONS=1
|
||||
DIR=`pwd`
|
||||
|
||||
# Guide:
|
||||
# This script supports distributed training on multi-gpu workers (as well as single-worker training).
|
||||
# Please set the options below according to the comments.
|
||||
# For multi-gpu workers training, these options should be manually set for each worker.
|
||||
# After setting the options, please run the script on each worker.
|
||||
|
||||
# Number of GPUs per GPU worker
|
||||
GPUS_PER_NODE=$(python -c 'import torch; print(torch.cuda.device_count())')
|
||||
|
||||
# Number of GPU workers, for single-worker training, please set to 1
|
||||
NNODES=${NNODES:-1}
|
||||
|
||||
# The rank of this worker, should be in {0, ..., WORKER_CNT-1}, for single-worker training, please set to 0
|
||||
NODE_RANK=${NODE_RANK:-0}
|
||||
|
||||
# The ip address of the rank-0 worker, for single-worker training, please set to localhost
|
||||
MASTER_ADDR=${MASTER_ADDR:localhost}
|
||||
|
||||
# The port for communication
|
||||
MASTER_PORT=${MASTER_PORT:-6001}
|
||||
|
||||
MODEL="Qwen/Qwen-7B" # Set the path if you do not want to load from huggingface directly
|
||||
# ATTENTION: specify the path to your training data, which should be a json file consisting of a list of conversations.
|
||||
# See the section for finetuning in README for more information.
|
||||
DATA="path_to_data"
|
||||
DS_CONFIG_PATH="finetune/ds_config_zero2.json"
|
||||
|
||||
function usage() {
|
||||
echo '
|
||||
Usage: bash finetune/finetune_lora_ds.sh [-m MODEL_PATH] [-d DATA_PATH] [--deepspeed DS_CONFIG_PATH]
|
||||
'
|
||||
}
|
||||
|
||||
while [[ "$1" != "" ]]; do
|
||||
case $1 in
|
||||
-m | --model )
|
||||
shift
|
||||
MODEL=$1
|
||||
;;
|
||||
-d | --data )
|
||||
shift
|
||||
DATA=$1
|
||||
;;
|
||||
--deepspeed )
|
||||
shift
|
||||
DS_CONFIG_PATH=$1
|
||||
;;
|
||||
-h | --help )
|
||||
usage
|
||||
exit 0
|
||||
;;
|
||||
* )
|
||||
echo "Unknown argument ${1}"
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
shift
|
||||
done
|
||||
|
||||
DISTRIBUTED_ARGS="
|
||||
--nproc_per_node $GPUS_PER_NODE \
|
||||
--nnodes $NNODES \
|
||||
--node_rank $NODE_RANK \
|
||||
--master_addr $MASTER_ADDR \
|
||||
--master_port $MASTER_PORT
|
||||
"
|
||||
|
||||
torchrun $DISTRIBUTED_ARGS finetune.py \
|
||||
--model_name_or_path $MODEL \
|
||||
--data_path $DATA \
|
||||
--bf16 True \
|
||||
--output_dir output_qwen \
|
||||
--num_train_epochs 5 \
|
||||
--per_device_train_batch_size 2 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 8 \
|
||||
--evaluation_strategy "no" \
|
||||
--save_strategy "steps" \
|
||||
--save_steps 1000 \
|
||||
--save_total_limit 10 \
|
||||
--learning_rate 3e-4 \
|
||||
--weight_decay 0.1 \
|
||||
--adam_beta2 0.95 \
|
||||
--warmup_ratio 0.01 \
|
||||
--lr_scheduler_type "cosine" \
|
||||
--logging_steps 1 \
|
||||
--report_to "none" \
|
||||
--model_max_length 512 \
|
||||
--lazy_preprocess True \
|
||||
--use_lora \
|
||||
--gradient_checkpointing \
|
||||
--deepspeed ${DS_CONFIG_PATH}
|
|
@ -1,93 +0,0 @@
|
|||
#!/bin/bash
|
||||
export CUDA_DEVICE_MAX_CONNECTIONS=1
|
||||
DIR=`pwd`
|
||||
|
||||
# Guide:
|
||||
# This script supports distributed training on multi-gpu workers (as well as single-worker training).
|
||||
# Please set the options below according to the comments.
|
||||
# For multi-gpu workers training, these options should be manually set for each worker.
|
||||
# After setting the options, please run the script on each worker.
|
||||
|
||||
# Number of GPUs per GPU worker
|
||||
GPUS_PER_NODE=$(python -c 'import torch; print(torch.cuda.device_count())')
|
||||
|
||||
# Number of GPU workers, for single-worker training, please set to 1
|
||||
NNODES=${NNODES:-1}
|
||||
|
||||
# The rank of this worker, should be in {0, ..., WORKER_CNT-1}, for single-worker training, please set to 0
|
||||
NODE_RANK=${NODE_RANK:-0}
|
||||
|
||||
# The ip address of the rank-0 worker, for single-worker training, please set to localhost
|
||||
MASTER_ADDR=${MASTER_ADDR:localhost}
|
||||
|
||||
# The port for communication
|
||||
MASTER_PORT=${MASTER_PORT:-6001}
|
||||
|
||||
MODEL="Qwen/Qwen-7B-Chat-Int4" # Set the path if you do not want to load from huggingface directly
|
||||
# ATTENTION: specify the path to your training data, which should be a json file consisting of a list of conversations.
|
||||
# See the section for finetuning in README for more information.
|
||||
DATA="path_to_data"
|
||||
|
||||
function usage() {
|
||||
echo '
|
||||
Usage: bash finetune/finetune_qlora_ds.sh [-m MODEL_PATH] [-d DATA_PATH]
|
||||
'
|
||||
}
|
||||
|
||||
while [[ "$1" != "" ]]; do
|
||||
case $1 in
|
||||
-m | --model )
|
||||
shift
|
||||
MODEL=$1
|
||||
;;
|
||||
-d | --data )
|
||||
shift
|
||||
DATA=$1
|
||||
;;
|
||||
-h | --help )
|
||||
usage
|
||||
exit 0
|
||||
;;
|
||||
* )
|
||||
echo "Unknown argument ${1}"
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
shift
|
||||
done
|
||||
|
||||
DISTRIBUTED_ARGS="
|
||||
--nproc_per_node $GPUS_PER_NODE \
|
||||
--nnodes $NNODES \
|
||||
--node_rank $NODE_RANK \
|
||||
--master_addr $MASTER_ADDR \
|
||||
--master_port $MASTER_PORT
|
||||
"
|
||||
|
||||
# Remember to use --fp16 instead of --bf16 due to autogptq
|
||||
torchrun $DISTRIBUTED_ARGS finetune.py \
|
||||
--model_name_or_path $MODEL \
|
||||
--data_path $DATA \
|
||||
--fp16 True \
|
||||
--output_dir output_qwen \
|
||||
--num_train_epochs 5 \
|
||||
--per_device_train_batch_size 2 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 8 \
|
||||
--evaluation_strategy "no" \
|
||||
--save_strategy "steps" \
|
||||
--save_steps 1000 \
|
||||
--save_total_limit 10 \
|
||||
--learning_rate 3e-4 \
|
||||
--weight_decay 0.1 \
|
||||
--adam_beta2 0.95 \
|
||||
--warmup_ratio 0.01 \
|
||||
--lr_scheduler_type "cosine" \
|
||||
--logging_steps 1 \
|
||||
--report_to "none" \
|
||||
--model_max_length 512 \
|
||||
--lazy_preprocess True \
|
||||
--use_lora \
|
||||
--q_lora \
|
||||
--gradient_checkpointing \
|
||||
--deepspeed finetune/ds_config_zero2.json
|
|
@ -1,66 +0,0 @@
|
|||
#!/bin/bash
|
||||
export CUDA_DEVICE_MAX_CONNECTIONS=1
|
||||
DIR=`pwd`
|
||||
|
||||
MODEL="Qwen/Qwen-7B-Chat-Int4" # Set the path if you do not want to load from huggingface directly
|
||||
# ATTENTION: specify the path to your training data, which should be a json file consisting of a list of conversations.
|
||||
# See the section for finetuning in README for more information.
|
||||
DATA="path_to_data"
|
||||
|
||||
function usage() {
|
||||
echo '
|
||||
Usage: bash finetune/finetune_qlora_single_gpu.sh [-m MODEL_PATH] [-d DATA_PATH]
|
||||
'
|
||||
}
|
||||
|
||||
while [[ "$1" != "" ]]; do
|
||||
case $1 in
|
||||
-m | --model )
|
||||
shift
|
||||
MODEL=$1
|
||||
;;
|
||||
-d | --data )
|
||||
shift
|
||||
DATA=$1
|
||||
;;
|
||||
-h | --help )
|
||||
usage
|
||||
exit 0
|
||||
;;
|
||||
* )
|
||||
echo "Unknown argument ${1}"
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
shift
|
||||
done
|
||||
|
||||
export CUDA_VISIBLE_DEVICES=0
|
||||
|
||||
# Remember to use --fp16 instead of --bf16 due to autogptq
|
||||
python finetune.py \
|
||||
--model_name_or_path $MODEL \
|
||||
--data_path $DATA \
|
||||
--fp16 True \
|
||||
--output_dir output_qwen \
|
||||
--num_train_epochs 5 \
|
||||
--per_device_train_batch_size 2 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 8 \
|
||||
--evaluation_strategy "no" \
|
||||
--save_strategy "steps" \
|
||||
--save_steps 1000 \
|
||||
--save_total_limit 10 \
|
||||
--learning_rate 3e-4 \
|
||||
--weight_decay 0.1 \
|
||||
--adam_beta2 0.95 \
|
||||
--warmup_ratio 0.01 \
|
||||
--lr_scheduler_type "cosine" \
|
||||
--logging_steps 1 \
|
||||
--report_to "none" \
|
||||
--model_max_length 512 \
|
||||
--lazy_preprocess True \
|
||||
--gradient_checkpointing \
|
||||
--use_lora \
|
||||
--q_lora \
|
||||
--deepspeed finetune/ds_config_zero2.json
|
|
@ -406,8 +406,7 @@ class QWenModel(QWenPreTrainedModel):
|
|||
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None
|
||||
):
|
||||
output_attentions = (
|
||||
output_attentions
|
||||
|
@ -420,9 +419,6 @@ class QWenModel(QWenPreTrainedModel):
|
|||
else self.config.output_hidden_states
|
||||
)
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
return_dict = (
|
||||
return_dict if return_dict is not None else self.config.use_return_dict
|
||||
)
|
||||
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError(
|
||||
|
@ -569,11 +565,6 @@ class QWenModel(QWenPreTrainedModel):
|
|||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
if not return_dict:
|
||||
return tuple(
|
||||
v for v in [hidden_states, presents, all_hidden_states] if v is not None
|
||||
)
|
||||
|
||||
return BaseModelOutputWithPast(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=presents,
|
||||
|
@ -639,11 +630,8 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, CausalLMOutputWithPast]:
|
||||
return_dict = (
|
||||
return_dict if return_dict is not None else self.config.use_return_dict
|
||||
)
|
||||
|
||||
|
||||
transformer_outputs = self.transformer(
|
||||
input_ids,
|
||||
|
@ -657,8 +645,7 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|||
encoder_attention_mask=encoder_attention_mask,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
output_hidden_states=output_hidden_states
|
||||
)
|
||||
hidden_states = transformer_outputs[0]
|
||||
|
||||
|
@ -674,17 +661,13 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|||
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
|
||||
)
|
||||
|
||||
shift_labels = torch.ones([1,19]).to(lm_logits.device).to(torch.int64)
|
||||
shift_logits = lm_logits[..., :-1, :].contiguous()
|
||||
loss_fct = CrossEntropyLoss()
|
||||
loss = loss_fct(
|
||||
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
|
||||
)
|
||||
loss.backward()
|
||||
|
||||
if not return_dict:
|
||||
output = (lm_logits,) + transformer_outputs[1:]
|
||||
return ((loss,) + output) if loss is not None else output
|
||||
# shift_labels = torch.ones([1,19]).to(lm_logits.device).to(torch.int64)
|
||||
# shift_logits = lm_logits[..., :-1, :].contiguous()
|
||||
# loss_fct = CrossEntropyLoss()
|
||||
# loss = loss_fct(
|
||||
# shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
|
||||
# )
|
||||
# loss.backward()
|
||||
|
||||
return CausalLMOutputWithPast(
|
||||
loss=loss,
|
||||
|
@ -1197,7 +1180,6 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|||
# forward pass to get next token
|
||||
outputs = self(
|
||||
**model_inputs,
|
||||
return_dict=True,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
)
|
||||
|
|
Loading…
Reference in New Issue