Remote return_dict config. Remove unuse files.

This commit is contained in:
Colin 2024-01-07 17:28:15 +08:00
parent 90cb0fe236
commit a8f2fbbff5
8 changed files with 15 additions and 489 deletions

View File

@ -14,7 +14,7 @@ model_dir = snapshot_download("qwen/Qwen-1_8B-Chat")
# model_dir = "/home/colin/.cache/modelscope/hub/qwen/Qwen-1_8B-Chat" # model_dir = "/home/colin/.cache/modelscope/hub/qwen/Qwen-1_8B-Chat"
config, kwargs = AutoConfig.from_pretrained( config, kwargs = AutoConfig.from_pretrained(
model_dir, "./",
return_unused_kwargs=True, return_unused_kwargs=True,
trust_remote_code=True, trust_remote_code=True,
code_revision=None, code_revision=None,
@ -25,15 +25,15 @@ model = QWenLMHeadModel(config)
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
model = model.from_pretrained( model = model.from_pretrained(
model_dir, device_map="auto", trust_remote_code=True model_dir, config=config, device_map="auto", trust_remote_code=True
).train() ).train()
# model.train() # model.train()
# model.zero_grad() # model.zero_grad()
# 可指定不同的生成长度、top_p等相关超参 # 可指定不同的生成长度、top_p等相关超参
model.generation_config = GenerationConfig.from_pretrained( # model.generation_config = GenerationConfig.from_pretrained(
model_dir, trust_remote_code=True # model_dir, trust_remote_code=True
) # )
# 第一轮对话 # 第一轮对话
response, history = model.chat(tokenizer, "你好", history=None) response, history = model.chat(tokenizer, "你好", history=None)

View File

@ -1,52 +0,0 @@
{
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"betas": "auto",
"eps": "auto",
"weight_decay": "auto"
}
},
"scheduler": {
"type": "WarmupLR",
"params": {
"warmup_min_lr": "auto",
"warmup_max_lr": "auto",
"warmup_num_steps": "auto"
}
},
"zero_optimization": {
"stage": 2,
"offload_optimizer": {
"device": "none",
"pin_memory": true
},
"allgather_partitions": true,
"allgather_bucket_size": 2e8,
"overlap_comm": true,
"reduce_scatter": true,
"reduce_bucket_size": 2e8,
"contiguous_gradients": true
},
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"steps_per_print": 100,
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"wall_clock_breakdown": false
}

View File

@ -1,59 +0,0 @@
{
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"betas": "auto",
"eps": "auto",
"weight_decay": "auto"
}
},
"scheduler": {
"type": "WarmupLR",
"params": {
"warmup_min_lr": "auto",
"warmup_max_lr": "auto",
"warmup_num_steps": "auto"
}
},
"zero_optimization": {
"stage": 3,
"offload_optimizer": {
"device": "none",
"pin_memory": true
},
"offload_param": {
"device": "none",
"pin_memory": true
},
"overlap_comm": true,
"contiguous_gradients": true,
"sub_group_size": 1e9,
"reduce_bucket_size": "auto",
"stage3_prefetch_bucket_size": "auto",
"stage3_param_persistence_threshold": "auto",
"stage3_max_live_parameters": 1e9,
"stage3_max_reuse_distance": 1e9,
"stage3_gather_16bit_weights_on_model_save": true
},
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"steps_per_print": 100,
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"wall_clock_breakdown": false
}

View File

@ -1,90 +0,0 @@
#!/bin/bash
export CUDA_DEVICE_MAX_CONNECTIONS=1
DIR=`pwd`
# Guide:
# This script supports distributed training on multi-gpu workers (as well as single-worker training).
# Please set the options below according to the comments.
# For multi-gpu workers training, these options should be manually set for each worker.
# After setting the options, please run the script on each worker.
# Number of GPUs per GPU worker
GPUS_PER_NODE=$(python -c 'import torch; print(torch.cuda.device_count())')
# Number of GPU workers, for single-worker training, please set to 1
NNODES=${NNODES:-1}
# The rank of this worker, should be in {0, ..., WORKER_CNT-1}, for single-worker training, please set to 0
NODE_RANK=${NODE_RANK:-0}
# The ip address of the rank-0 worker, for single-worker training, please set to localhost
MASTER_ADDR=${MASTER_ADDR:localhost}
# The port for communication
MASTER_PORT=${MASTER_PORT:-6001}
MODEL="Qwen/Qwen-7B" # Set the path if you do not want to load from huggingface directly
# ATTENTION: specify the path to your training data, which should be a json file consisting of a list of conversations.
# See the section for finetuning in README for more information.
DATA="path_to_data"
function usage() {
echo '
Usage: bash finetune/finetune_ds.sh [-m MODEL_PATH] [-d DATA_PATH]
'
}
while [[ "$1" != "" ]]; do
case $1 in
-m | --model )
shift
MODEL=$1
;;
-d | --data )
shift
DATA=$1
;;
-h | --help )
usage
exit 0
;;
* )
echo "Unknown argument ${1}"
exit 1
;;
esac
shift
done
DISTRIBUTED_ARGS="
--nproc_per_node $GPUS_PER_NODE \
--nnodes $NNODES \
--node_rank $NODE_RANK \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT
"
torchrun $DISTRIBUTED_ARGS finetune.py \
--model_name_or_path $MODEL \
--data_path $DATA \
--bf16 True \
--output_dir output_qwen \
--num_train_epochs 5 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 16 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 1000 \
--save_total_limit 10 \
--learning_rate 1e-5 \
--weight_decay 0.1 \
--adam_beta2 0.95 \
--warmup_ratio 0.01 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--report_to "none" \
--model_max_length 512 \
--gradient_checkpointing True \
--lazy_preprocess True \
--deepspeed finetune/ds_config_zero3.json

View File

@ -1,96 +0,0 @@
#!/bin/bash
export CUDA_DEVICE_MAX_CONNECTIONS=1
DIR=`pwd`
# Guide:
# This script supports distributed training on multi-gpu workers (as well as single-worker training).
# Please set the options below according to the comments.
# For multi-gpu workers training, these options should be manually set for each worker.
# After setting the options, please run the script on each worker.
# Number of GPUs per GPU worker
GPUS_PER_NODE=$(python -c 'import torch; print(torch.cuda.device_count())')
# Number of GPU workers, for single-worker training, please set to 1
NNODES=${NNODES:-1}
# The rank of this worker, should be in {0, ..., WORKER_CNT-1}, for single-worker training, please set to 0
NODE_RANK=${NODE_RANK:-0}
# The ip address of the rank-0 worker, for single-worker training, please set to localhost
MASTER_ADDR=${MASTER_ADDR:localhost}
# The port for communication
MASTER_PORT=${MASTER_PORT:-6001}
MODEL="Qwen/Qwen-7B" # Set the path if you do not want to load from huggingface directly
# ATTENTION: specify the path to your training data, which should be a json file consisting of a list of conversations.
# See the section for finetuning in README for more information.
DATA="path_to_data"
DS_CONFIG_PATH="finetune/ds_config_zero2.json"
function usage() {
echo '
Usage: bash finetune/finetune_lora_ds.sh [-m MODEL_PATH] [-d DATA_PATH] [--deepspeed DS_CONFIG_PATH]
'
}
while [[ "$1" != "" ]]; do
case $1 in
-m | --model )
shift
MODEL=$1
;;
-d | --data )
shift
DATA=$1
;;
--deepspeed )
shift
DS_CONFIG_PATH=$1
;;
-h | --help )
usage
exit 0
;;
* )
echo "Unknown argument ${1}"
exit 1
;;
esac
shift
done
DISTRIBUTED_ARGS="
--nproc_per_node $GPUS_PER_NODE \
--nnodes $NNODES \
--node_rank $NODE_RANK \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT
"
torchrun $DISTRIBUTED_ARGS finetune.py \
--model_name_or_path $MODEL \
--data_path $DATA \
--bf16 True \
--output_dir output_qwen \
--num_train_epochs 5 \
--per_device_train_batch_size 2 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 1000 \
--save_total_limit 10 \
--learning_rate 3e-4 \
--weight_decay 0.1 \
--adam_beta2 0.95 \
--warmup_ratio 0.01 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--report_to "none" \
--model_max_length 512 \
--lazy_preprocess True \
--use_lora \
--gradient_checkpointing \
--deepspeed ${DS_CONFIG_PATH}

View File

@ -1,93 +0,0 @@
#!/bin/bash
export CUDA_DEVICE_MAX_CONNECTIONS=1
DIR=`pwd`
# Guide:
# This script supports distributed training on multi-gpu workers (as well as single-worker training).
# Please set the options below according to the comments.
# For multi-gpu workers training, these options should be manually set for each worker.
# After setting the options, please run the script on each worker.
# Number of GPUs per GPU worker
GPUS_PER_NODE=$(python -c 'import torch; print(torch.cuda.device_count())')
# Number of GPU workers, for single-worker training, please set to 1
NNODES=${NNODES:-1}
# The rank of this worker, should be in {0, ..., WORKER_CNT-1}, for single-worker training, please set to 0
NODE_RANK=${NODE_RANK:-0}
# The ip address of the rank-0 worker, for single-worker training, please set to localhost
MASTER_ADDR=${MASTER_ADDR:localhost}
# The port for communication
MASTER_PORT=${MASTER_PORT:-6001}
MODEL="Qwen/Qwen-7B-Chat-Int4" # Set the path if you do not want to load from huggingface directly
# ATTENTION: specify the path to your training data, which should be a json file consisting of a list of conversations.
# See the section for finetuning in README for more information.
DATA="path_to_data"
function usage() {
echo '
Usage: bash finetune/finetune_qlora_ds.sh [-m MODEL_PATH] [-d DATA_PATH]
'
}
while [[ "$1" != "" ]]; do
case $1 in
-m | --model )
shift
MODEL=$1
;;
-d | --data )
shift
DATA=$1
;;
-h | --help )
usage
exit 0
;;
* )
echo "Unknown argument ${1}"
exit 1
;;
esac
shift
done
DISTRIBUTED_ARGS="
--nproc_per_node $GPUS_PER_NODE \
--nnodes $NNODES \
--node_rank $NODE_RANK \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT
"
# Remember to use --fp16 instead of --bf16 due to autogptq
torchrun $DISTRIBUTED_ARGS finetune.py \
--model_name_or_path $MODEL \
--data_path $DATA \
--fp16 True \
--output_dir output_qwen \
--num_train_epochs 5 \
--per_device_train_batch_size 2 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 1000 \
--save_total_limit 10 \
--learning_rate 3e-4 \
--weight_decay 0.1 \
--adam_beta2 0.95 \
--warmup_ratio 0.01 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--report_to "none" \
--model_max_length 512 \
--lazy_preprocess True \
--use_lora \
--q_lora \
--gradient_checkpointing \
--deepspeed finetune/ds_config_zero2.json

View File

@ -1,66 +0,0 @@
#!/bin/bash
export CUDA_DEVICE_MAX_CONNECTIONS=1
DIR=`pwd`
MODEL="Qwen/Qwen-7B-Chat-Int4" # Set the path if you do not want to load from huggingface directly
# ATTENTION: specify the path to your training data, which should be a json file consisting of a list of conversations.
# See the section for finetuning in README for more information.
DATA="path_to_data"
function usage() {
echo '
Usage: bash finetune/finetune_qlora_single_gpu.sh [-m MODEL_PATH] [-d DATA_PATH]
'
}
while [[ "$1" != "" ]]; do
case $1 in
-m | --model )
shift
MODEL=$1
;;
-d | --data )
shift
DATA=$1
;;
-h | --help )
usage
exit 0
;;
* )
echo "Unknown argument ${1}"
exit 1
;;
esac
shift
done
export CUDA_VISIBLE_DEVICES=0
# Remember to use --fp16 instead of --bf16 due to autogptq
python finetune.py \
--model_name_or_path $MODEL \
--data_path $DATA \
--fp16 True \
--output_dir output_qwen \
--num_train_epochs 5 \
--per_device_train_batch_size 2 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 1000 \
--save_total_limit 10 \
--learning_rate 3e-4 \
--weight_decay 0.1 \
--adam_beta2 0.95 \
--warmup_ratio 0.01 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--report_to "none" \
--model_max_length 512 \
--lazy_preprocess True \
--gradient_checkpointing \
--use_lora \
--q_lora \
--deepspeed finetune/ds_config_zero2.json

View File

@ -406,8 +406,7 @@ class QWenModel(QWenPreTrainedModel):
encoder_attention_mask: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None, use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None
return_dict: Optional[bool] = None,
): ):
output_attentions = ( output_attentions = (
output_attentions output_attentions
@ -420,9 +419,6 @@ class QWenModel(QWenPreTrainedModel):
else self.config.output_hidden_states else self.config.output_hidden_states
) )
use_cache = use_cache if use_cache is not None else self.config.use_cache use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
if input_ids is not None and inputs_embeds is not None: if input_ids is not None and inputs_embeds is not None:
raise ValueError( raise ValueError(
@ -569,11 +565,6 @@ class QWenModel(QWenPreTrainedModel):
if output_hidden_states: if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,) all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v for v in [hidden_states, presents, all_hidden_states] if v is not None
)
return BaseModelOutputWithPast( return BaseModelOutputWithPast(
last_hidden_state=hidden_states, last_hidden_state=hidden_states,
past_key_values=presents, past_key_values=presents,
@ -639,11 +630,8 @@ class QWenLMHeadModel(QWenPreTrainedModel):
use_cache: Optional[bool] = None, use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]: ) -> Union[Tuple, CausalLMOutputWithPast]:
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
transformer_outputs = self.transformer( transformer_outputs = self.transformer(
input_ids, input_ids,
@ -657,8 +645,7 @@ class QWenLMHeadModel(QWenPreTrainedModel):
encoder_attention_mask=encoder_attention_mask, encoder_attention_mask=encoder_attention_mask,
use_cache=use_cache, use_cache=use_cache,
output_attentions=output_attentions, output_attentions=output_attentions,
output_hidden_states=output_hidden_states, output_hidden_states=output_hidden_states
return_dict=return_dict,
) )
hidden_states = transformer_outputs[0] hidden_states = transformer_outputs[0]
@ -674,17 +661,13 @@ class QWenLMHeadModel(QWenPreTrainedModel):
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1) shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
) )
shift_labels = torch.ones([1,19]).to(lm_logits.device).to(torch.int64) # shift_labels = torch.ones([1,19]).to(lm_logits.device).to(torch.int64)
shift_logits = lm_logits[..., :-1, :].contiguous() # shift_logits = lm_logits[..., :-1, :].contiguous()
loss_fct = CrossEntropyLoss() # loss_fct = CrossEntropyLoss()
loss = loss_fct( # loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1) # shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
) # )
loss.backward() # loss.backward()
if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithPast( return CausalLMOutputWithPast(
loss=loss, loss=loss,
@ -1197,7 +1180,6 @@ class QWenLMHeadModel(QWenPreTrainedModel):
# forward pass to get next token # forward pass to get next token
outputs = self( outputs = self(
**model_inputs, **model_inputs,
return_dict=True,
output_attentions=output_attentions, output_attentions=output_attentions,
output_hidden_states=output_hidden_states, output_hidden_states=output_hidden_states,
) )