Update mnist unsuper learning.

This commit is contained in:
Colin 2024-09-08 15:22:12 +08:00
parent dd07e54edd
commit ad246c6c7f
21 changed files with 78 additions and 41 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 6.4 KiB

After

Width:  |  Height:  |  Size: 3.4 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 647 B

After

Width:  |  Height:  |  Size: 415 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 242 B

After

Width:  |  Height:  |  Size: 738 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 292 B

After

Width:  |  Height:  |  Size: 246 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 549 B

After

Width:  |  Height:  |  Size: 711 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 741 B

After

Width:  |  Height:  |  Size: 733 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 109 B

After

Width:  |  Height:  |  Size: 108 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 594 B

After

Width:  |  Height:  |  Size: 661 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 251 B

After

Width:  |  Height:  |  Size: 648 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 90 B

After

Width:  |  Height:  |  Size: 107 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 7.5 KiB

After

Width:  |  Height:  |  Size: 4.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 647 B

After

Width:  |  Height:  |  Size: 415 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 242 B

After

Width:  |  Height:  |  Size: 738 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 267 B

After

Width:  |  Height:  |  Size: 220 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 549 B

After

Width:  |  Height:  |  Size: 711 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 726 B

After

Width:  |  Height:  |  Size: 727 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 109 B

After

Width:  |  Height:  |  Size: 106 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 594 B

After

Width:  |  Height:  |  Size: 661 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 251 B

After

Width:  |  Height:  |  Size: 621 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 90 B

After

Width:  |  Height:  |  Size: 113 B

View File

@ -16,10 +16,8 @@ torch.cuda.manual_seed_all(seed)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# device = torch.device("mps") # device = torch.device("mps")
# Hyper-parameters
num_epochs = 1 num_epochs = 1
batch_size = 64 batch_size = 64
learning_rate = 0.2
transform = transforms.Compose([transforms.ToTensor()]) transform = transforms.Compose([transforms.ToTensor()])
@ -36,92 +34,131 @@ class ConvNet(nn.Module):
self.pool = nn.MaxPool2d(2, 2) self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(8, 1, 5, 1, 0) self.conv2 = nn.Conv2d(8, 1, 5, 1, 0)
self.fc1 = nn.Linear(1 * 4 * 4, 10) self.fc1 = nn.Linear(1 * 4 * 4, 10)
# self.fc2 = nn.Linear(120, 84)
# self.fc3 = nn.Linear(84, 10)
def forward(self, x): def forward(self, x):
x = self.pool(F.relu(self.conv1(x))) x = self.pool(self.conv1(x))
x = self.pool(F.relu(self.conv2(x))) x = self.pool(self.conv2(x))
x = x.view(x.shape[0], -1) x = x.view(x.shape[0], -1)
# x = F.relu(self.fc1(x))
# x = F.relu(self.fc2(x))
# x = self.fc3(x)
x = self.fc1(x) x = self.fc1(x)
return x return x
def printFector(self, x, label): def forward_unsuper(self, x):
show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]), "input_image.png", Contrast=[0, 1.0]) x = self.pool(self.conv1(x))
return x
def forward_finetune(self, x):
x = self.pool(self.conv1(x))
x = self.pool(self.conv2(x))
x = x.view(x.shape[0], -1)
x = self.fc1(x)
return x
def printFector(self, x, label, dir=""):
show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]), dir + "/input_image.png", Contrast=[0, 1.0])
# show.DumpTensorToLog(x, "input_image.log") # show.DumpTensorToLog(x, "input_image.log")
x = self.conv1(x) x = self.conv1(x)
w = self.conv1.weight w = self.conv1.weight
show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]), "conv1_weight.png", Contrast=[-1.0, 1.0]) show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]), dir + "/conv1_weight.png", Contrast=[-1.0, 1.0])
# show.DumpTensorToLog(w, "conv1_weight.log") # show.DumpTensorToLog(w, "conv1_weight.log")
show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]), "conv1_output.png", Contrast=[-1.0, 1.0]) show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]), dir + "/conv1_output.png", Contrast=[-1.0, 1.0])
# show.DumpTensorToLog(x, "conv1_output.png") # show.DumpTensorToLog(x, "conv1_output.png")
x = self.pool(F.relu(x)) x = self.pool(F.relu(x))
x = self.conv2(x) x = self.conv2(x)
w = self.conv2.weight w = self.conv2.weight
show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]).cpu(), "conv2_weight.png", Contrast=[-1.0, 1.0]) show.DumpTensorToImage(
w.view(-1, w.shape[2], w.shape[3]).cpu(), dir + "/conv2_weight.png", Contrast=[-1.0, 1.0]
)
show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]).cpu(), "conv2_output.png", Contrast=[-1.0, 1.0]) show.DumpTensorToImage(
x.view(-1, x.shape[2], x.shape[3]).cpu(), dir + "/conv2_output.png", Contrast=[-1.0, 1.0]
)
x = self.pool(F.relu(x)) x = self.pool(F.relu(x))
show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]).cpu(), "pool_output.png", Contrast=[-1.0, 1.0]) show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]).cpu(), dir + "/pool_output.png", Contrast=[-1.0, 1.0])
pool_shape = x.shape pool_shape = x.shape
x = x.view(x.shape[0], -1) x = x.view(x.shape[0], -1)
x = self.fc1(x) x = self.fc1(x)
show.DumpTensorToImage( show.DumpTensorToImage(
self.fc1.weight.view(-1, pool_shape[2], pool_shape[3]), "fc_weight.png", Contrast=[-1.0, 1.0] self.fc1.weight.view(-1, pool_shape[2], pool_shape[3]), dir + "/fc_weight.png", Contrast=[-1.0, 1.0]
) )
show.DumpTensorToImage(x.view(-1).cpu(), "fc_output.png") show.DumpTensorToImage(x.view(-1).cpu(), dir + "/fc_output.png")
criterion = nn.CrossEntropyLoss() criterion = nn.CrossEntropyLoss()
loss = criterion(x, label) loss = criterion(x, label)
optimizer.zero_grad()
loss.backward() loss.backward()
if self.conv1.weight.requires_grad:
w = self.conv1.weight.grad w = self.conv1.weight.grad
show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]).cpu(), "conv1_weight_grad.png") show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]).cpu(), dir + "/conv1_weight_grad.png")
if self.conv2.weight.requires_grad:
w = self.conv2.weight.grad w = self.conv2.weight.grad
show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]), "conv2_weight_grad.png") show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]), dir + "/conv2_weight_grad.png")
show.DumpTensorToImage(self.fc1.weight.grad.view(-1, pool_shape[2], pool_shape[3]), "fc_weight_grad.png") if self.fc1.weight.requires_grad:
show.DumpTensorToImage(
self.fc1.weight.grad.view(-1, pool_shape[2], pool_shape[3]), dir + "/fc_weight_grad.png"
)
model = ConvNet().to(device) model = ConvNet().to(device)
model.train()
criterion = nn.CrossEntropyLoss() # Train the model unsuper
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) epochs = 10
model.conv1.weight.requires_grad = True
model.conv2.weight.requires_grad = False
model.fc1.weight.requires_grad = False
optimizer_unsuper = torch.optim.SGD(model.parameters(), lr=0.1)
n_total_steps = len(train_loader)
for epoch in range(epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.to(device)
outputs = model.forward_unsuper(images)
sample = outputs.view(outputs.shape[0], -1)
sample_mean = torch.mean(sample, dim=1, keepdim=True)
diff_mean = torch.mean(torch.abs(sample - sample_mean), dim=1, keepdim=True)
diff_ratio = (sample - sample_mean) / diff_mean
diff_ratio_mean = torch.mean(diff_ratio * diff_ratio, dim=1)
label = diff_ratio_mean * 0.5
loss = F.l1_loss(diff_ratio_mean, label)
optimizer_unsuper.zero_grad()
loss.backward()
optimizer_unsuper.step()
if (i + 1) % 100 == 0:
print(f"Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.8f}")
# Train the model # Train the model
model.conv1.weight.requires_grad = False
model.conv2.weight.requires_grad = True
model.fc1.weight.requires_grad = True
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=0.6)
n_total_steps = len(train_loader) n_total_steps = len(train_loader)
for epoch in range(num_epochs): for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader): for i, (images, labels) in enumerate(train_loader):
images = images.to(device) images = images.to(device)
labels = labels.to(device) labels = labels.to(device)
outputs = model.forward_finetune(images)
# Forward pass
outputs = model(images)
loss = criterion(outputs, labels) loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad() optimizer.zero_grad()
loss.backward() loss.backward()
optimizer.step() optimizer.step()
if (i + 1) % 100 == 0: if (i + 1) % 100 == 0:
print(f"Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.4f}") print(f"Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.4f}")
print("Finished Training")
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False)
for images, labels in test_loader: test_loader = iter(test_loader)
images, labels = next(test_loader)
images = images.to(device) images = images.to(device)
labels = labels.to(device) labels = labels.to(device)
model.printFector(images, labels) model.printFector(images, labels, "dump1")
break
print("Finished Training") images, labels = next(test_loader)
images = images.to(device)
labels = labels.to(device)
model.printFector(images, labels, "dump2")
# Test the model # Test the model
with torch.no_grad(): with torch.no_grad():