Update mnist unsuper learning.
Before Width: | Height: | Size: 6.4 KiB After Width: | Height: | Size: 3.4 KiB |
Before Width: | Height: | Size: 647 B After Width: | Height: | Size: 415 B |
Before Width: | Height: | Size: 242 B After Width: | Height: | Size: 738 B |
Before Width: | Height: | Size: 292 B After Width: | Height: | Size: 246 B |
Before Width: | Height: | Size: 549 B After Width: | Height: | Size: 711 B |
Before Width: | Height: | Size: 741 B After Width: | Height: | Size: 733 B |
Before Width: | Height: | Size: 109 B After Width: | Height: | Size: 108 B |
Before Width: | Height: | Size: 594 B After Width: | Height: | Size: 661 B |
Before Width: | Height: | Size: 251 B After Width: | Height: | Size: 648 B |
Before Width: | Height: | Size: 90 B After Width: | Height: | Size: 107 B |
Before Width: | Height: | Size: 7.5 KiB After Width: | Height: | Size: 4.1 KiB |
Before Width: | Height: | Size: 647 B After Width: | Height: | Size: 415 B |
Before Width: | Height: | Size: 242 B After Width: | Height: | Size: 738 B |
Before Width: | Height: | Size: 267 B After Width: | Height: | Size: 220 B |
Before Width: | Height: | Size: 549 B After Width: | Height: | Size: 711 B |
Before Width: | Height: | Size: 726 B After Width: | Height: | Size: 727 B |
Before Width: | Height: | Size: 109 B After Width: | Height: | Size: 106 B |
Before Width: | Height: | Size: 594 B After Width: | Height: | Size: 661 B |
Before Width: | Height: | Size: 251 B After Width: | Height: | Size: 621 B |
Before Width: | Height: | Size: 90 B After Width: | Height: | Size: 113 B |
|
@ -16,10 +16,8 @@ torch.cuda.manual_seed_all(seed)
|
|||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
# device = torch.device("mps")
|
||||
|
||||
# Hyper-parameters
|
||||
num_epochs = 1
|
||||
batch_size = 64
|
||||
learning_rate = 0.2
|
||||
|
||||
transform = transforms.Compose([transforms.ToTensor()])
|
||||
|
||||
|
@ -36,93 +34,132 @@ class ConvNet(nn.Module):
|
|||
self.pool = nn.MaxPool2d(2, 2)
|
||||
self.conv2 = nn.Conv2d(8, 1, 5, 1, 0)
|
||||
self.fc1 = nn.Linear(1 * 4 * 4, 10)
|
||||
# self.fc2 = nn.Linear(120, 84)
|
||||
# self.fc3 = nn.Linear(84, 10)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.pool(F.relu(self.conv1(x)))
|
||||
x = self.pool(F.relu(self.conv2(x)))
|
||||
x = self.pool(self.conv1(x))
|
||||
x = self.pool(self.conv2(x))
|
||||
x = x.view(x.shape[0], -1)
|
||||
# x = F.relu(self.fc1(x))
|
||||
# x = F.relu(self.fc2(x))
|
||||
# x = self.fc3(x)
|
||||
|
||||
x = self.fc1(x)
|
||||
return x
|
||||
|
||||
def printFector(self, x, label):
|
||||
show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]), "input_image.png", Contrast=[0, 1.0])
|
||||
def forward_unsuper(self, x):
|
||||
x = self.pool(self.conv1(x))
|
||||
return x
|
||||
|
||||
def forward_finetune(self, x):
|
||||
x = self.pool(self.conv1(x))
|
||||
x = self.pool(self.conv2(x))
|
||||
x = x.view(x.shape[0], -1)
|
||||
x = self.fc1(x)
|
||||
return x
|
||||
|
||||
def printFector(self, x, label, dir=""):
|
||||
show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]), dir + "/input_image.png", Contrast=[0, 1.0])
|
||||
# show.DumpTensorToLog(x, "input_image.log")
|
||||
x = self.conv1(x)
|
||||
w = self.conv1.weight
|
||||
show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]), "conv1_weight.png", Contrast=[-1.0, 1.0])
|
||||
show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]), dir + "/conv1_weight.png", Contrast=[-1.0, 1.0])
|
||||
# show.DumpTensorToLog(w, "conv1_weight.log")
|
||||
|
||||
show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]), "conv1_output.png", Contrast=[-1.0, 1.0])
|
||||
show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]), dir + "/conv1_output.png", Contrast=[-1.0, 1.0])
|
||||
# show.DumpTensorToLog(x, "conv1_output.png")
|
||||
|
||||
x = self.pool(F.relu(x))
|
||||
x = self.conv2(x)
|
||||
w = self.conv2.weight
|
||||
show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]).cpu(), "conv2_weight.png", Contrast=[-1.0, 1.0])
|
||||
show.DumpTensorToImage(
|
||||
w.view(-1, w.shape[2], w.shape[3]).cpu(), dir + "/conv2_weight.png", Contrast=[-1.0, 1.0]
|
||||
)
|
||||
|
||||
show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]).cpu(), "conv2_output.png", Contrast=[-1.0, 1.0])
|
||||
show.DumpTensorToImage(
|
||||
x.view(-1, x.shape[2], x.shape[3]).cpu(), dir + "/conv2_output.png", Contrast=[-1.0, 1.0]
|
||||
)
|
||||
x = self.pool(F.relu(x))
|
||||
show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]).cpu(), "pool_output.png", Contrast=[-1.0, 1.0])
|
||||
show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]).cpu(), dir + "/pool_output.png", Contrast=[-1.0, 1.0])
|
||||
pool_shape = x.shape
|
||||
x = x.view(x.shape[0], -1)
|
||||
x = self.fc1(x)
|
||||
show.DumpTensorToImage(
|
||||
self.fc1.weight.view(-1, pool_shape[2], pool_shape[3]), "fc_weight.png", Contrast=[-1.0, 1.0]
|
||||
self.fc1.weight.view(-1, pool_shape[2], pool_shape[3]), dir + "/fc_weight.png", Contrast=[-1.0, 1.0]
|
||||
)
|
||||
show.DumpTensorToImage(x.view(-1).cpu(), "fc_output.png")
|
||||
show.DumpTensorToImage(x.view(-1).cpu(), dir + "/fc_output.png")
|
||||
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
loss = criterion(x, label)
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
|
||||
w = self.conv1.weight.grad
|
||||
show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]).cpu(), "conv1_weight_grad.png")
|
||||
w = self.conv2.weight.grad
|
||||
show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]), "conv2_weight_grad.png")
|
||||
show.DumpTensorToImage(self.fc1.weight.grad.view(-1, pool_shape[2], pool_shape[3]), "fc_weight_grad.png")
|
||||
if self.conv1.weight.requires_grad:
|
||||
w = self.conv1.weight.grad
|
||||
show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]).cpu(), dir + "/conv1_weight_grad.png")
|
||||
if self.conv2.weight.requires_grad:
|
||||
w = self.conv2.weight.grad
|
||||
show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]), dir + "/conv2_weight_grad.png")
|
||||
if self.fc1.weight.requires_grad:
|
||||
show.DumpTensorToImage(
|
||||
self.fc1.weight.grad.view(-1, pool_shape[2], pool_shape[3]), dir + "/fc_weight_grad.png"
|
||||
)
|
||||
|
||||
|
||||
model = ConvNet().to(device)
|
||||
model.train()
|
||||
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
|
||||
|
||||
# Train the model unsuper
|
||||
epochs = 10
|
||||
model.conv1.weight.requires_grad = True
|
||||
model.conv2.weight.requires_grad = False
|
||||
model.fc1.weight.requires_grad = False
|
||||
optimizer_unsuper = torch.optim.SGD(model.parameters(), lr=0.1)
|
||||
n_total_steps = len(train_loader)
|
||||
for epoch in range(epochs):
|
||||
for i, (images, labels) in enumerate(train_loader):
|
||||
images = images.to(device)
|
||||
outputs = model.forward_unsuper(images)
|
||||
sample = outputs.view(outputs.shape[0], -1)
|
||||
sample_mean = torch.mean(sample, dim=1, keepdim=True)
|
||||
diff_mean = torch.mean(torch.abs(sample - sample_mean), dim=1, keepdim=True)
|
||||
diff_ratio = (sample - sample_mean) / diff_mean
|
||||
diff_ratio_mean = torch.mean(diff_ratio * diff_ratio, dim=1)
|
||||
label = diff_ratio_mean * 0.5
|
||||
loss = F.l1_loss(diff_ratio_mean, label)
|
||||
optimizer_unsuper.zero_grad()
|
||||
loss.backward()
|
||||
optimizer_unsuper.step()
|
||||
if (i + 1) % 100 == 0:
|
||||
print(f"Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.8f}")
|
||||
|
||||
# Train the model
|
||||
model.conv1.weight.requires_grad = False
|
||||
model.conv2.weight.requires_grad = True
|
||||
model.fc1.weight.requires_grad = True
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=0.6)
|
||||
n_total_steps = len(train_loader)
|
||||
for epoch in range(num_epochs):
|
||||
for i, (images, labels) in enumerate(train_loader):
|
||||
images = images.to(device)
|
||||
labels = labels.to(device)
|
||||
|
||||
# Forward pass
|
||||
outputs = model(images)
|
||||
outputs = model.forward_finetune(images)
|
||||
loss = criterion(outputs, labels)
|
||||
|
||||
# Backward and optimize
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
if (i + 1) % 100 == 0:
|
||||
print(f"Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.4f}")
|
||||
|
||||
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False)
|
||||
for images, labels in test_loader:
|
||||
images = images.to(device)
|
||||
labels = labels.to(device)
|
||||
model.printFector(images, labels)
|
||||
break
|
||||
|
||||
print("Finished Training")
|
||||
|
||||
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False)
|
||||
test_loader = iter(test_loader)
|
||||
images, labels = next(test_loader)
|
||||
images = images.to(device)
|
||||
labels = labels.to(device)
|
||||
model.printFector(images, labels, "dump1")
|
||||
|
||||
images, labels = next(test_loader)
|
||||
images = images.to(device)
|
||||
labels = labels.to(device)
|
||||
model.printFector(images, labels, "dump2")
|
||||
|
||||
# Test the model
|
||||
with torch.no_grad():
|
||||
n_correct = 0
|
||||
|
|