Format code.
This commit is contained in:
parent
bde8f71a7f
commit
b3ef30aa1a
|
@ -3,6 +3,7 @@ from transformers import PretrainedConfig
|
||||||
|
|
||||||
class ChatGLMConfig(PretrainedConfig):
|
class ChatGLMConfig(PretrainedConfig):
|
||||||
model_type = "chatglm"
|
model_type = "chatglm"
|
||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
num_layers=28,
|
num_layers=28,
|
||||||
|
@ -58,4 +59,4 @@ class ChatGLMConfig(PretrainedConfig):
|
||||||
self.quantization_bit = quantization_bit
|
self.quantization_bit = quantization_bit
|
||||||
self.pre_seq_len = pre_seq_len
|
self.pre_seq_len = pre_seq_len
|
||||||
self.prefix_projection = prefix_projection
|
self.prefix_projection = prefix_projection
|
||||||
super().__init__(**kwargs)
|
super().__init__(**kwargs)
|
||||||
|
|
|
@ -26,9 +26,7 @@ from tools import show
|
||||||
class RotaryEmbedding(nn.Module):
|
class RotaryEmbedding(nn.Module):
|
||||||
def __init__(self, dim: int, original_impl=False, device=None, dtype=None):
|
def __init__(self, dim: int, original_impl=False, device=None, dtype=None):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
inv_freq = 1.0 / (
|
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, device=device).to(dtype=dtype) / dim))
|
||||||
10000 ** (torch.arange(0, dim, 2, device=device).to(dtype=dtype) / dim)
|
|
||||||
)
|
|
||||||
self.register_buffer("inv_freq", inv_freq)
|
self.register_buffer("inv_freq", inv_freq)
|
||||||
self.dim = dim
|
self.dim = dim
|
||||||
self.original_impl = original_impl
|
self.original_impl = original_impl
|
||||||
|
@ -37,13 +35,7 @@ class RotaryEmbedding(nn.Module):
|
||||||
dtype = self.inv_freq.dtype
|
dtype = self.inv_freq.dtype
|
||||||
device = self.inv_freq.device
|
device = self.inv_freq.device
|
||||||
# $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
|
# $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
|
||||||
theta = 1.0 / (
|
theta = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.float, device=device) / self.dim))
|
||||||
base
|
|
||||||
** (
|
|
||||||
torch.arange(0, self.dim, 2, dtype=torch.float, device=device)
|
|
||||||
/ self.dim
|
|
||||||
)
|
|
||||||
)
|
|
||||||
# Create position indexes `[0, 1, ..., max_seq_len - 1]`
|
# Create position indexes `[0, 1, ..., max_seq_len - 1]`
|
||||||
seq_idx = torch.arange(max_seq_len, dtype=torch.float, device=device)
|
seq_idx = torch.arange(max_seq_len, dtype=torch.float, device=device)
|
||||||
# Calculate the product of position index and $\theta_i$
|
# Calculate the product of position index and $\theta_i$
|
||||||
|
@ -58,9 +50,7 @@ class RotaryEmbedding(nn.Module):
|
||||||
class RMSNorm(torch.nn.Module):
|
class RMSNorm(torch.nn.Module):
|
||||||
def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None, **kwargs):
|
def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None, **kwargs):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.weight = torch.nn.Parameter(
|
self.weight = torch.nn.Parameter(torch.empty(normalized_shape, device=device, dtype=dtype))
|
||||||
torch.empty(normalized_shape, device=device, dtype=dtype)
|
|
||||||
)
|
|
||||||
self.eps = eps
|
self.eps = eps
|
||||||
|
|
||||||
def forward(self, hidden_states: torch.Tensor):
|
def forward(self, hidden_states: torch.Tensor):
|
||||||
|
@ -80,9 +70,7 @@ class CoreAttention(torch.nn.Module):
|
||||||
projection_size = config.kv_channels * config.num_attention_heads
|
projection_size = config.kv_channels * config.num_attention_heads
|
||||||
# Per attention head and per partition values.
|
# Per attention head and per partition values.
|
||||||
self.hidden_size_per_partition = projection_size
|
self.hidden_size_per_partition = projection_size
|
||||||
self.hidden_size_per_attention_head = (
|
self.hidden_size_per_attention_head = projection_size // config.num_attention_heads
|
||||||
projection_size // config.num_attention_heads
|
|
||||||
)
|
|
||||||
self.num_attention_heads_per_partition = config.num_attention_heads
|
self.num_attention_heads_per_partition = config.num_attention_heads
|
||||||
|
|
||||||
coeff = None
|
coeff = None
|
||||||
|
@ -94,17 +82,13 @@ class CoreAttention(torch.nn.Module):
|
||||||
self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
|
self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
|
||||||
|
|
||||||
def forward(self, query_layer, key_layer, value_layer):
|
def forward(self, query_layer, key_layer, value_layer):
|
||||||
query_layer, key_layer, value_layer = [
|
query_layer, key_layer, value_layer = [k.permute(1, 2, 0, 3) for k in [query_layer, key_layer, value_layer]]
|
||||||
k.permute(1, 2, 0, 3) for k in [query_layer, key_layer, value_layer]
|
|
||||||
]
|
|
||||||
if query_layer.shape[2] == key_layer.shape[2]:
|
if query_layer.shape[2] == key_layer.shape[2]:
|
||||||
context_layer = torch.nn.functional.scaled_dot_product_attention(
|
context_layer = torch.nn.functional.scaled_dot_product_attention(
|
||||||
query_layer, key_layer, value_layer, is_causal=True
|
query_layer, key_layer, value_layer, is_causal=True
|
||||||
)
|
)
|
||||||
context_layer = context_layer.permute(2, 0, 1, 3)
|
context_layer = context_layer.permute(2, 0, 1, 3)
|
||||||
new_context_layer_shape = context_layer.size()[:-2] + (
|
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
||||||
self.hidden_size_per_partition,
|
|
||||||
)
|
|
||||||
context_layer = context_layer.reshape(*new_context_layer_shape)
|
context_layer = context_layer.reshape(*new_context_layer_shape)
|
||||||
return context_layer
|
return context_layer
|
||||||
|
|
||||||
|
@ -114,16 +98,13 @@ class SelfAttention(torch.nn.Module):
|
||||||
super(SelfAttention, self).__init__()
|
super(SelfAttention, self).__init__()
|
||||||
self.layer_number = max(1, layer_number)
|
self.layer_number = max(1, layer_number)
|
||||||
self.projection_size = config.kv_channels * config.num_attention_heads
|
self.projection_size = config.kv_channels * config.num_attention_heads
|
||||||
self.hidden_size_per_attention_head = (
|
self.hidden_size_per_attention_head = self.projection_size // config.num_attention_heads
|
||||||
self.projection_size // config.num_attention_heads
|
|
||||||
)
|
|
||||||
self.num_attention_heads_per_partition = config.num_attention_heads
|
self.num_attention_heads_per_partition = config.num_attention_heads
|
||||||
self.multi_query_attention = config.multi_query_attention
|
self.multi_query_attention = config.multi_query_attention
|
||||||
self.qkv_hidden_size = 3 * self.projection_size
|
self.qkv_hidden_size = 3 * self.projection_size
|
||||||
self.num_multi_query_groups_per_partition = config.multi_query_group_num
|
self.num_multi_query_groups_per_partition = config.multi_query_group_num
|
||||||
self.qkv_hidden_size = (
|
self.qkv_hidden_size = (
|
||||||
self.projection_size
|
self.projection_size + 2 * self.hidden_size_per_attention_head * config.multi_query_group_num
|
||||||
+ 2 * self.hidden_size_per_attention_head * config.multi_query_group_num
|
|
||||||
)
|
)
|
||||||
self.query_key_value = nn.Linear(
|
self.query_key_value = nn.Linear(
|
||||||
config.hidden_size,
|
config.hidden_size,
|
||||||
|
@ -163,12 +144,9 @@ class SelfAttention(torch.nn.Module):
|
||||||
|
|
||||||
(query_layer, key_layer, value_layer) = mixed_x_layer.split(
|
(query_layer, key_layer, value_layer) = mixed_x_layer.split(
|
||||||
[
|
[
|
||||||
self.num_attention_heads_per_partition
|
self.num_attention_heads_per_partition * self.hidden_size_per_attention_head,
|
||||||
* self.hidden_size_per_attention_head,
|
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
|
||||||
self.num_multi_query_groups_per_partition
|
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
|
||||||
* self.hidden_size_per_attention_head,
|
|
||||||
self.num_multi_query_groups_per_partition
|
|
||||||
* self.hidden_size_per_attention_head,
|
|
||||||
],
|
],
|
||||||
dim=-1,
|
dim=-1,
|
||||||
)
|
)
|
||||||
|
@ -204,8 +182,7 @@ class SelfAttention(torch.nn.Module):
|
||||||
-1,
|
-1,
|
||||||
-1,
|
-1,
|
||||||
-1,
|
-1,
|
||||||
self.num_attention_heads_per_partition
|
self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition,
|
||||||
// self.num_multi_query_groups_per_partition,
|
|
||||||
-1,
|
-1,
|
||||||
)
|
)
|
||||||
key_layer = key_layer.contiguous().view(
|
key_layer = key_layer.contiguous().view(
|
||||||
|
@ -220,8 +197,7 @@ class SelfAttention(torch.nn.Module):
|
||||||
-1,
|
-1,
|
||||||
-1,
|
-1,
|
||||||
-1,
|
-1,
|
||||||
self.num_attention_heads_per_partition
|
self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition,
|
||||||
// self.num_multi_query_groups_per_partition,
|
|
||||||
-1,
|
-1,
|
||||||
)
|
)
|
||||||
value_layer = value_layer.contiguous().view(
|
value_layer = value_layer.contiguous().view(
|
||||||
|
@ -292,9 +268,7 @@ class GLMBlock(torch.nn.Module):
|
||||||
super(GLMBlock, self).__init__()
|
super(GLMBlock, self).__init__()
|
||||||
self.layer_number = layer_number
|
self.layer_number = layer_number
|
||||||
|
|
||||||
self.apply_residual_connection_post_layernorm = (
|
self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
|
||||||
config.apply_residual_connection_post_layernorm
|
|
||||||
)
|
|
||||||
|
|
||||||
self.fp32_residual_connection = config.fp32_residual_connection
|
self.fp32_residual_connection = config.fp32_residual_connection
|
||||||
|
|
||||||
|
@ -326,9 +300,7 @@ class GLMBlock(torch.nn.Module):
|
||||||
attention_output = self.self_attention(layernorm_output, rotary_pos_emb)
|
attention_output = self.self_attention(layernorm_output, rotary_pos_emb)
|
||||||
residual = hidden_states
|
residual = hidden_states
|
||||||
|
|
||||||
layernorm_input = torch.nn.functional.dropout(
|
layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout, training=self.training)
|
||||||
attention_output, p=self.hidden_dropout, training=self.training
|
|
||||||
)
|
|
||||||
layernorm_input = residual + layernorm_input
|
layernorm_input = residual + layernorm_input
|
||||||
|
|
||||||
# Layer norm post the self attention.
|
# Layer norm post the self attention.
|
||||||
|
@ -339,9 +311,7 @@ class GLMBlock(torch.nn.Module):
|
||||||
|
|
||||||
residual = layernorm_input
|
residual = layernorm_input
|
||||||
|
|
||||||
output = torch.nn.functional.dropout(
|
output = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout, training=self.training)
|
||||||
mlp_output, p=self.hidden_dropout, training=self.training
|
|
||||||
)
|
|
||||||
output = residual + output
|
output = residual + output
|
||||||
return output
|
return output
|
||||||
|
|
||||||
|
@ -409,9 +379,7 @@ class ChatGLMModel(nn.Module):
|
||||||
# Rotary positional embeddings
|
# Rotary positional embeddings
|
||||||
self.seq_length = config.seq_length
|
self.seq_length = config.seq_length
|
||||||
rotary_dim = (
|
rotary_dim = (
|
||||||
config.hidden_size // config.num_attention_heads
|
config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels
|
||||||
if config.kv_channels is None
|
|
||||||
else config.kv_channels
|
|
||||||
)
|
)
|
||||||
|
|
||||||
self.rotary_pos_emb = RotaryEmbedding(
|
self.rotary_pos_emb = RotaryEmbedding(
|
||||||
|
@ -438,9 +406,7 @@ class ChatGLMModel(nn.Module):
|
||||||
tokenizer=None,
|
tokenizer=None,
|
||||||
):
|
):
|
||||||
output_hidden_states = (
|
output_hidden_states = (
|
||||||
output_hidden_states
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||||
if output_hidden_states is not None
|
|
||||||
else self.config.output_hidden_states
|
|
||||||
)
|
)
|
||||||
inputs_embeds = self.embedding(input_ids)
|
inputs_embeds = self.embedding(input_ids)
|
||||||
|
|
||||||
|
@ -475,23 +441,17 @@ class ChatGLMForConditionalGeneration(nn.Module):
|
||||||
self.warnings_issued = {}
|
self.warnings_issued = {}
|
||||||
self.generation_config = GenerationConfig.from_model_config(config)
|
self.generation_config = GenerationConfig.from_model_config(config)
|
||||||
|
|
||||||
def from_pretrained(
|
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]]):
|
||||||
cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]]
|
|
||||||
):
|
|
||||||
load_in_8bit = False
|
load_in_8bit = False
|
||||||
load_in_4bit = False
|
load_in_4bit = False
|
||||||
|
|
||||||
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
|
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
|
||||||
resolved_archive_file = os.path.join(
|
resolved_archive_file = os.path.join(pretrained_model_name_or_path, "pytorch_model.bin.index.json")
|
||||||
pretrained_model_name_or_path, "pytorch_model.bin.index.json"
|
|
||||||
)
|
|
||||||
print(f"loading weights file {resolved_archive_file}")
|
print(f"loading weights file {resolved_archive_file}")
|
||||||
with open(resolved_archive_file, "r") as f:
|
with open(resolved_archive_file, "r") as f:
|
||||||
index = json.loads(f.read())
|
index = json.loads(f.read())
|
||||||
shard_filenames = sorted(set(index["weight_map"].values()))
|
shard_filenames = sorted(set(index["weight_map"].values()))
|
||||||
resolved_archive_file = [
|
resolved_archive_file = [os.path.join(pretrained_model_name_or_path, f) for f in shard_filenames]
|
||||||
os.path.join(pretrained_model_name_or_path, f) for f in shard_filenames
|
|
||||||
]
|
|
||||||
model = cls._load_pretrained_model(resolved_archive_file)
|
model = cls._load_pretrained_model(resolved_archive_file)
|
||||||
model.is_loaded_in_4bit = load_in_4bit
|
model.is_loaded_in_4bit = load_in_4bit
|
||||||
model.is_loaded_in_8bit = load_in_8bit
|
model.is_loaded_in_8bit = load_in_8bit
|
||||||
|
@ -524,21 +484,15 @@ class ChatGLMForConditionalGeneration(nn.Module):
|
||||||
model_to_load = cls
|
model_to_load = cls
|
||||||
error_msgs = []
|
error_msgs = []
|
||||||
if len(resolved_archive_file) > 1:
|
if len(resolved_archive_file) > 1:
|
||||||
resolved_archive_file = tqdm_lib.tqdm(
|
resolved_archive_file = tqdm_lib.tqdm(resolved_archive_file, desc="Loading checkpoint shards")
|
||||||
resolved_archive_file, desc="Loading checkpoint shards"
|
|
||||||
)
|
|
||||||
for shard_file in resolved_archive_file:
|
for shard_file in resolved_archive_file:
|
||||||
state_dict = torch.load(shard_file, map_location="cpu")
|
state_dict = torch.load(shard_file, map_location="cpu")
|
||||||
|
|
||||||
error_msgs += cls._load_state_dict_into_model(
|
error_msgs += cls._load_state_dict_into_model(model_to_load, state_dict, start_prefix)
|
||||||
model_to_load, state_dict, start_prefix
|
|
||||||
)
|
|
||||||
del state_dict # force memory release
|
del state_dict # force memory release
|
||||||
gc.collect()
|
gc.collect()
|
||||||
|
|
||||||
print(
|
print(f"All model checkpoint weights were used when initializing {cls.__class__.__name__}.\n")
|
||||||
f"All model checkpoint weights were used when initializing {cls.__class__.__name__}.\n"
|
|
||||||
)
|
|
||||||
return cls
|
return cls
|
||||||
|
|
||||||
@torch.inference_mode()
|
@torch.inference_mode()
|
||||||
|
@ -556,9 +510,7 @@ class ChatGLMForConditionalGeneration(nn.Module):
|
||||||
|
|
||||||
generation_config = copy.deepcopy(self.generation_config)
|
generation_config = copy.deepcopy(self.generation_config)
|
||||||
inputs_tensor = inputs["input_ids"]
|
inputs_tensor = inputs["input_ids"]
|
||||||
input_ids = inputs_tensor.repeat_interleave(
|
input_ids = inputs_tensor.repeat_interleave(generation_config.num_return_sequences, dim=0)
|
||||||
generation_config.num_return_sequences, dim=0
|
|
||||||
)
|
|
||||||
|
|
||||||
outputs = self.sample(
|
outputs = self.sample(
|
||||||
input_ids,
|
input_ids,
|
||||||
|
@ -585,17 +537,13 @@ class ChatGLMForConditionalGeneration(nn.Module):
|
||||||
eos_token_id = [eos_token_id]
|
eos_token_id = [eos_token_id]
|
||||||
eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device)
|
eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device)
|
||||||
|
|
||||||
isFinished = torch.zeros(
|
isFinished = torch.zeros(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
|
||||||
input_ids.shape[0], dtype=torch.long, device=input_ids.device
|
|
||||||
)
|
|
||||||
# token_count = 0
|
# token_count = 0
|
||||||
while True:
|
while True:
|
||||||
input_ids_in = input_ids
|
input_ids_in = input_ids
|
||||||
batch_size, seq_length = input_ids_in.shape
|
batch_size, seq_length = input_ids_in.shape
|
||||||
position_ids_in = (
|
position_ids_in = (
|
||||||
torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
|
torch.arange(seq_length, dtype=torch.long, device=input_ids.device).unsqueeze(0).repeat(batch_size, 1)
|
||||||
.unsqueeze(0)
|
|
||||||
.repeat(batch_size, 1)
|
|
||||||
)
|
)
|
||||||
model_inputs = {"input_ids": input_ids_in, "position_ids": position_ids_in}
|
model_inputs = {"input_ids": input_ids_in, "position_ids": position_ids_in}
|
||||||
|
|
||||||
|
|
|
@ -19,8 +19,17 @@ class SPTokenizer:
|
||||||
self.pad_id: int = self.sp_model.unk_id()
|
self.pad_id: int = self.sp_model.unk_id()
|
||||||
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
|
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
|
||||||
|
|
||||||
special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop", "<|system|>", "<|user|>", "<|assistant|>",
|
special_tokens = [
|
||||||
"<|observation|>"]
|
"[MASK]",
|
||||||
|
"[gMASK]",
|
||||||
|
"[sMASK]",
|
||||||
|
"sop",
|
||||||
|
"eop",
|
||||||
|
"<|system|>",
|
||||||
|
"<|user|>",
|
||||||
|
"<|assistant|>",
|
||||||
|
"<|observation|>",
|
||||||
|
]
|
||||||
self.special_tokens = {}
|
self.special_tokens = {}
|
||||||
self.index_special_tokens = {}
|
self.index_special_tokens = {}
|
||||||
for token in special_tokens:
|
for token in special_tokens:
|
||||||
|
@ -59,7 +68,7 @@ class SPTokenizer:
|
||||||
return text
|
return text
|
||||||
|
|
||||||
def convert_token_to_id(self, token):
|
def convert_token_to_id(self, token):
|
||||||
""" Converts a token (str) in an id using the vocab. """
|
"""Converts a token (str) in an id using the vocab."""
|
||||||
if token in self.special_tokens:
|
if token in self.special_tokens:
|
||||||
return self.special_tokens[token]
|
return self.special_tokens[token]
|
||||||
return self.sp_model.PieceToId(token)
|
return self.sp_model.PieceToId(token)
|
||||||
|
@ -86,7 +95,7 @@ class ChatGLMTokenizer(PreTrainedTokenizer):
|
||||||
self.special_tokens = {
|
self.special_tokens = {
|
||||||
"<bos>": self.tokenizer.bos_id,
|
"<bos>": self.tokenizer.bos_id,
|
||||||
"<eos>": self.tokenizer.eos_id,
|
"<eos>": self.tokenizer.eos_id,
|
||||||
"<pad>": self.tokenizer.pad_id
|
"<pad>": self.tokenizer.pad_id,
|
||||||
}
|
}
|
||||||
super().__init__(padding_side=padding_side, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs)
|
super().__init__(padding_side=padding_side, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs)
|
||||||
|
|
||||||
|
@ -121,7 +130,7 @@ class ChatGLMTokenizer(PreTrainedTokenizer):
|
||||||
return self.tokenizer.n_words
|
return self.tokenizer.n_words
|
||||||
|
|
||||||
def get_vocab(self):
|
def get_vocab(self):
|
||||||
""" Returns vocab as a dict """
|
"""Returns vocab as a dict"""
|
||||||
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
|
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
|
||||||
vocab.update(self.added_tokens_encoder)
|
vocab.update(self.added_tokens_encoder)
|
||||||
return vocab
|
return vocab
|
||||||
|
@ -130,7 +139,7 @@ class ChatGLMTokenizer(PreTrainedTokenizer):
|
||||||
return self.tokenizer.tokenize(text)
|
return self.tokenizer.tokenize(text)
|
||||||
|
|
||||||
def _convert_token_to_id(self, token):
|
def _convert_token_to_id(self, token):
|
||||||
""" Converts a token (str) in an id using the vocab. """
|
"""Converts a token (str) in an id using the vocab."""
|
||||||
return self.tokenizer.convert_token_to_id(token)
|
return self.tokenizer.convert_token_to_id(token)
|
||||||
|
|
||||||
def _convert_id_to_token(self, index):
|
def _convert_id_to_token(self, index):
|
||||||
|
|
|
@ -24,8 +24,7 @@ tokenizer = ChatGLMTokenizer(*init_inputs, **init_kwargs)
|
||||||
|
|
||||||
|
|
||||||
a = tokenizer.encode("骉")
|
a = tokenizer.encode("骉")
|
||||||
b = tokenizer.decode([236,173,140])
|
b = tokenizer.decode([236, 173, 140])
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
token = []
|
token = []
|
||||||
|
@ -44,9 +43,8 @@ show.DumpListToFile(token, "generated/token.log")
|
||||||
# next_t = torch.multinomial(probss, num_samples=1).squeeze(1)
|
# next_t = torch.multinomial(probss, num_samples=1).squeeze(1)
|
||||||
|
|
||||||
# response = tokenizer.decode(next_t)
|
# response = tokenizer.decode(next_t)
|
||||||
|
|
||||||
# print(response)
|
# print(response)
|
||||||
# # name = "generated/next_tokens" + str(token_count) + "_" + response + "_.png"
|
# # name = "generated/next_tokens" + str(token_count) + "_" + response + "_.png"
|
||||||
# # show.DumpTensorToImage(next_token_logits[0], name)
|
# # show.DumpTensorToImage(next_token_logits[0], name)
|
||||||
# # token_count = token_count + 1
|
# # token_count = token_count + 1
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue