refine code
This commit is contained in:
parent
d50cb798b6
commit
b860d794a6
|
@ -15,12 +15,15 @@ learning_rate = 0.001
|
|||
|
||||
# Dataset has PILImage images of range [0, 1].
|
||||
# We transform them to Tensors of normalized range [-1, 1]
|
||||
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
|
||||
transform = transforms.Compose([transforms.ToTensor()])
|
||||
|
||||
# CIFAR10: 60000 32x32 color images in 10 classes, with 6000 images per class
|
||||
train_dataset = torchvision.datasets.CIFAR10(root="./data", train=True, download=True, transform=transform)
|
||||
# train_dataset = torchvision.datasets.CIFAR10(root="./data", train=True, download=True, transform=transform)
|
||||
train_dataset = torchvision.datasets.MNIST(root="./data", train=True, download=True, transform=transform)
|
||||
|
||||
test_dataset = torchvision.datasets.CIFAR10(root="./data", train=False, download=True, transform=transform)
|
||||
|
||||
# test_dataset = torchvision.datasets.CIFAR10(root="./data", train=False, download=True, transform=transform)
|
||||
test_dataset = torchvision.datasets.MNIST(root="./data", train=False, download=True, transform=transform)
|
||||
|
||||
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
||||
|
||||
|
@ -30,22 +33,22 @@ test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, s
|
|||
class ConvNet(nn.Module):
|
||||
def __init__(self):
|
||||
super(ConvNet, self).__init__()
|
||||
self.conv1 = nn.Conv2d(3, 6, 5)
|
||||
self.conv1 = nn.Conv2d(1, 6, 3, 1, 1)
|
||||
self.pool = nn.MaxPool2d(2, 2)
|
||||
self.conv2 = nn.Conv2d(6, 16, 5)
|
||||
self.fc1 = nn.Linear(16 * 5 * 5, 120)
|
||||
self.fc2 = nn.Linear(120, 84)
|
||||
self.fc3 = nn.Linear(84, 10)
|
||||
self.fc1 = nn.Linear(16 * 5 * 5, 10)
|
||||
# self.fc2 = nn.Linear(120, 84)
|
||||
# self.fc3 = nn.Linear(84, 10)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.pool(F.relu(self.conv1(x)))
|
||||
x = self.pool(F.relu(self.conv2(x)))
|
||||
x = x.view(-1, 16 * 5 * 5)
|
||||
# x = F.relu(self.fc1(x))
|
||||
x = self.fc1(x)
|
||||
# x = F.relu(self.fc2(x))
|
||||
x = self.fc2(x)
|
||||
x = self.fc3(x)
|
||||
# x = self.fc3(x)
|
||||
|
||||
x = self.fc1(x)
|
||||
return x
|
||||
|
||||
|
||||
|
@ -54,6 +57,7 @@ model = ConvNet().to(device)
|
|||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
|
||||
|
||||
|
||||
# Train the model
|
||||
n_total_steps = len(train_loader)
|
||||
for epoch in range(num_epochs):
|
||||
|
|
Loading…
Reference in New Issue