Refine to dump heat image.
|
@ -8,7 +8,7 @@ import numpy as np
|
||||||
import os
|
import os
|
||||||
|
|
||||||
|
|
||||||
def DumpTensorToImage(tensor, name, forceSquare=True, scale=1.0, AutoContrast=True, GridValue=0):
|
def DumpTensorToImage(tensor, name, forceSquare=True, scale=1.0, Contrast=None, GridValue=None):
|
||||||
if len(tensor.shape) != 2 and len(tensor.shape) != 1 and len(tensor.shape) != 3:
|
if len(tensor.shape) != 2 and len(tensor.shape) != 1 and len(tensor.shape) != 3:
|
||||||
raise ("Error input dims")
|
raise ("Error input dims")
|
||||||
if ("." not in name) or (name.split(".")[-1] not in {"jpg", "png", "bmp"}):
|
if ("." not in name) or (name.split(".")[-1] not in {"jpg", "png", "bmp"}):
|
||||||
|
@ -17,27 +17,36 @@ def DumpTensorToImage(tensor, name, forceSquare=True, scale=1.0, AutoContrast=Tr
|
||||||
if len(tensor.shape) == 3:
|
if len(tensor.shape) == 3:
|
||||||
channel = tensor.shape[0]
|
channel = tensor.shape[0]
|
||||||
x = math.ceil((channel) ** 0.5)
|
x = math.ceil((channel) ** 0.5)
|
||||||
tensor = F.pad(tensor, (0, 0, 0, 0, 0, x * x - channel), mode="constant", value=0)
|
calc = tensor.reshape((channel, tensor.shape[1] * tensor.shape[2]))
|
||||||
calc = tensor.reshape((x * x, tensor.shape[1] * tensor.shape[2]))
|
if not Contrast:
|
||||||
if AutoContrast:
|
|
||||||
tensormax = calc.max(1)[0]
|
tensormax = calc.max(1)[0]
|
||||||
tensormin = calc.min(1)[0]
|
tensormin = calc.min(1)[0]
|
||||||
|
else:
|
||||||
|
tensormax = Contrast[1]
|
||||||
|
tensormin = Contrast[0]
|
||||||
calc = calc.transpose(1, 0)
|
calc = calc.transpose(1, 0)
|
||||||
calc = ((calc - tensormin) / (tensormax - tensormin)) * 255
|
calc = ((calc - tensormin) / (tensormax - tensormin)) * 255.0
|
||||||
calc = calc.transpose(1, 0)
|
calc = calc.transpose(1, 0)
|
||||||
|
calc = calc.reshape((channel, tensor.shape[1], tensor.shape[2]))
|
||||||
|
if not GridValue:
|
||||||
|
GridValue = 128.0
|
||||||
|
calc = F.pad(calc, (0, 0, 0, 0, 0, x * x - channel), mode="constant", value=GridValue)
|
||||||
calc = calc.reshape((x, x, tensor.shape[1], tensor.shape[2]))
|
calc = calc.reshape((x, x, tensor.shape[1], tensor.shape[2]))
|
||||||
calc = F.pad(calc, (0, 1, 0, 1, 0, 0), mode="constant", value=GridValue)
|
calc = F.pad(calc, (0, 1, 0, 1, 0, 0), mode="constant", value=GridValue)
|
||||||
tensor = calc.permute((0, 2, 1, 3))
|
tensor = calc.permute((0, 2, 1, 3))
|
||||||
tensor = tensor.reshape((x * tensor.shape[1], x * tensor.shape[3]))
|
tensor = tensor.reshape((x * tensor.shape[1], x * tensor.shape[3]))
|
||||||
DumpTensorToImage(tensor, name, forceSquare=False, scale=scale, AutoContrast=False)
|
DumpTensorToImage(tensor, name, forceSquare=False, scale=scale, Contrast=[0.0, 255.0], GridValue=GridValue)
|
||||||
return
|
return
|
||||||
|
|
||||||
tensor = tensor.float()
|
tensor = tensor.float()
|
||||||
if AutoContrast:
|
if not Contrast:
|
||||||
maxv = torch.max(tensor)
|
maxv = torch.max(tensor)
|
||||||
minv = torch.min(tensor)
|
minv = torch.min(tensor)
|
||||||
tensor = ((tensor - minv) / (maxv - minv)) * 255
|
else:
|
||||||
img = tensor.byte().cpu().numpy()
|
maxv = Contrast[1]
|
||||||
|
minv = Contrast[0]
|
||||||
|
tensor = ((tensor - minv) / (maxv - minv)) * 255.0
|
||||||
|
img = tensor.detach().cpu().numpy()
|
||||||
srp = img.shape
|
srp = img.shape
|
||||||
|
|
||||||
if len(srp) == 1: # 1D的数据自动折叠成2D图像
|
if len(srp) == 1: # 1D的数据自动折叠成2D图像
|
||||||
|
@ -51,13 +60,21 @@ def DumpTensorToImage(tensor, name, forceSquare=True, scale=1.0, AutoContrast=Tr
|
||||||
if scale != 1.0:
|
if scale != 1.0:
|
||||||
img = cv2.resize(img, [int(srp[0] * scale), int(srp[1] * scale)])
|
img = cv2.resize(img, [int(srp[0] * scale), int(srp[1] * scale)])
|
||||||
srp = img.shape
|
srp = img.shape
|
||||||
cv2.imwrite(name, img)
|
|
||||||
|
img = img * (-1)
|
||||||
|
img = img + 255
|
||||||
|
img[img < 0] = 0
|
||||||
|
img = np.nan_to_num(img, nan=0.0)
|
||||||
|
img[img > 255] = 255
|
||||||
|
imgs = img.astype(np.uint8)
|
||||||
|
imgs = cv2.applyColorMap(imgs, cv2.COLORMAP_JET)
|
||||||
|
cv2.imwrite(name, imgs)
|
||||||
|
|
||||||
|
|
||||||
def DumpTensorToLog(tensor, name="log"):
|
def DumpTensorToLog(tensor, name="log"):
|
||||||
shape = tensor.shape
|
shape = tensor.shape
|
||||||
f = open(name, "w")
|
f = open(name, "w")
|
||||||
data = tensor.reshape([-1]).float().cpu().numpy().tolist()
|
data = tensor.reshape([-1]).float().cpu().detach().numpy().tolist()
|
||||||
for d in data:
|
for d in data:
|
||||||
f.writelines("%s" % d + os.linesep)
|
f.writelines("%s" % d + os.linesep)
|
||||||
f.close()
|
f.close()
|
||||||
|
|
Before Width: | Height: | Size: 2.8 KiB After Width: | Height: | Size: 6.4 KiB |
Before Width: | Height: | Size: 191 B After Width: | Height: | Size: 648 B |
Before Width: | Height: | Size: 187 B After Width: | Height: | Size: 698 B |
Before Width: | Height: | Size: 1020 B After Width: | Height: | Size: 1.6 KiB |
Before Width: | Height: | Size: 2.0 KiB After Width: | Height: | Size: 4.8 KiB |
Before Width: | Height: | Size: 1.8 KiB After Width: | Height: | Size: 4.2 KiB |
Before Width: | Height: | Size: 84 B After Width: | Height: | Size: 109 B |
Before Width: | Height: | Size: 2.4 KiB After Width: | Height: | Size: 3.4 KiB |
Before Width: | Height: | Size: 1.1 KiB After Width: | Height: | Size: 2.0 KiB |
Before Width: | Height: | Size: 320 B After Width: | Height: | Size: 544 B |
|
@ -14,11 +14,11 @@ torch.manual_seed(seed)
|
||||||
torch.cuda.manual_seed_all(seed)
|
torch.cuda.manual_seed_all(seed)
|
||||||
|
|
||||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
device = torch.device("mps")
|
# device = torch.device("mps")
|
||||||
|
|
||||||
# Hyper-parameters
|
# Hyper-parameters
|
||||||
num_epochs = 1
|
num_epochs = 1
|
||||||
batch_size = 1
|
batch_size = 256
|
||||||
learning_rate = 0.001
|
learning_rate = 0.001
|
||||||
|
|
||||||
transform = transforms.Compose([transforms.ToTensor()])
|
transform = transforms.Compose([transforms.ToTensor()])
|
||||||
|
@ -32,17 +32,17 @@ test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, s
|
||||||
class ConvNet(nn.Module):
|
class ConvNet(nn.Module):
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
super(ConvNet, self).__init__()
|
super(ConvNet, self).__init__()
|
||||||
self.conv1 = nn.Conv2d(1, 8, 3, 1, 1)
|
self.conv1 = nn.Conv2d(1, 8, 5, 1, 0)
|
||||||
self.pool = nn.MaxPool2d(2, 2)
|
self.pool = nn.MaxPool2d(2, 2)
|
||||||
self.conv2 = nn.Conv2d(8, 8, 5)
|
self.conv2 = nn.Conv2d(8, 8, 5, 1, 0)
|
||||||
self.fc1 = nn.Linear(8 * 5 * 5, 10)
|
self.fc1 = nn.Linear(8 * 4 * 4, 10)
|
||||||
# self.fc2 = nn.Linear(120, 84)
|
# self.fc2 = nn.Linear(120, 84)
|
||||||
# self.fc3 = nn.Linear(84, 10)
|
# self.fc3 = nn.Linear(84, 10)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
x = self.pool(F.relu(self.conv1(x)))
|
x = self.pool(F.relu(self.conv1(x)))
|
||||||
x = self.pool(F.relu(self.conv2(x)))
|
x = self.pool(F.relu(self.conv2(x)))
|
||||||
x = x.view(-1, 8 * 5 * 5)
|
x = x.view(-1, 8 * 4 * 4)
|
||||||
# x = F.relu(self.fc1(x))
|
# x = F.relu(self.fc1(x))
|
||||||
# x = F.relu(self.fc2(x))
|
# x = F.relu(self.fc2(x))
|
||||||
# x = self.fc3(x)
|
# x = self.fc3(x)
|
||||||
|
@ -51,12 +51,16 @@ class ConvNet(nn.Module):
|
||||||
return x
|
return x
|
||||||
|
|
||||||
def printFector(self, x, label):
|
def printFector(self, x, label):
|
||||||
show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]).cpu(), "input_image.png")
|
show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]), "input_image.png", Contrast=[0, 1.0])
|
||||||
|
# show.DumpTensorToLog(x, "input_image.log")
|
||||||
x = self.conv1(x)
|
x = self.conv1(x)
|
||||||
w = self.conv1.weight
|
w = self.conv1.weight
|
||||||
show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]).cpu(), "conv1_weight.png")
|
show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]), "conv1_weight.png", Contrast=[-1.0, 1.0])
|
||||||
|
# show.DumpTensorToLog(w, "conv1_weight.log")
|
||||||
|
|
||||||
|
show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]), "conv1_output.png", Contrast=[-1.0, 1.0])
|
||||||
|
# show.DumpTensorToLog(x, "conv1_output.png")
|
||||||
|
|
||||||
show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]).cpu(), "conv1_output.png")
|
|
||||||
x = self.pool(F.relu(x))
|
x = self.pool(F.relu(x))
|
||||||
x = self.conv2(x)
|
x = self.conv2(x)
|
||||||
w = self.conv2.weight
|
w = self.conv2.weight
|
||||||
|
@ -64,10 +68,10 @@ class ConvNet(nn.Module):
|
||||||
|
|
||||||
show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]).cpu(), "conv2_output.png")
|
show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]).cpu(), "conv2_output.png")
|
||||||
x = self.pool(F.relu(x))
|
x = self.pool(F.relu(x))
|
||||||
x = x.view(-1, 8 * 5 * 5)
|
x = x.view(-1, 8 * 4 * 4)
|
||||||
x = self.fc1(x)
|
x = self.fc1(x)
|
||||||
|
|
||||||
show.DumpTensorToImage(self.fc1.weight.view(-1, 10, 10).permute(2, 0, 1).cpu(), "fc_weight.png")
|
show.DumpTensorToImage(self.fc1.weight.view(-1, 16, 8).permute(2, 0, 1), "fc_weight.png")
|
||||||
|
|
||||||
show.DumpTensorToImage(x.view(-1).cpu(), "fc_output.png")
|
show.DumpTensorToImage(x.view(-1).cpu(), "fc_output.png")
|
||||||
|
|
||||||
|
@ -79,8 +83,8 @@ class ConvNet(nn.Module):
|
||||||
w = self.conv1.weight.grad
|
w = self.conv1.weight.grad
|
||||||
show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]).cpu(), "conv1_weight_grad.png")
|
show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]).cpu(), "conv1_weight_grad.png")
|
||||||
w = self.conv2.weight.grad
|
w = self.conv2.weight.grad
|
||||||
show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]).cpu(), "conv2_weight_grad.png")
|
show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]), "conv2_weight_grad.png")
|
||||||
show.DumpTensorToImage(self.fc1.weight.grad.view(-1, 10, 10).permute(2, 0, 1).cpu(), "fc_weight_grad.png")
|
show.DumpTensorToImage(self.fc1.weight.grad.view(-1, 16, 8).permute(2, 0, 1), "fc_weight_grad.png")
|
||||||
|
|
||||||
|
|
||||||
model = ConvNet().to(device)
|
model = ConvNet().to(device)
|
||||||
|
@ -105,9 +109,10 @@ for epoch in range(num_epochs):
|
||||||
loss.backward()
|
loss.backward()
|
||||||
optimizer.step()
|
optimizer.step()
|
||||||
|
|
||||||
if (i + 1) % 2000 == 0:
|
if (i + 1) % 100 == 0:
|
||||||
print(f"Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.4f}")
|
print(f"Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.4f}")
|
||||||
|
|
||||||
|
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False)
|
||||||
for images, labels in test_loader:
|
for images, labels in test_loader:
|
||||||
images = images.to(device)
|
images = images.to(device)
|
||||||
labels = labels.to(device)
|
labels = labels.to(device)
|
||||||
|
|