Refine to dump heat image.
| 
						 | 
					@ -8,7 +8,7 @@ import numpy as np
 | 
				
			||||||
import os
 | 
					import os
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def DumpTensorToImage(tensor, name, forceSquare=True, scale=1.0, AutoContrast=True, GridValue=0):
 | 
					def DumpTensorToImage(tensor, name, forceSquare=True, scale=1.0, Contrast=None, GridValue=None):
 | 
				
			||||||
    if len(tensor.shape) != 2 and len(tensor.shape) != 1 and len(tensor.shape) != 3:
 | 
					    if len(tensor.shape) != 2 and len(tensor.shape) != 1 and len(tensor.shape) != 3:
 | 
				
			||||||
        raise ("Error input dims")
 | 
					        raise ("Error input dims")
 | 
				
			||||||
    if ("." not in name) or (name.split(".")[-1] not in {"jpg", "png", "bmp"}):
 | 
					    if ("." not in name) or (name.split(".")[-1] not in {"jpg", "png", "bmp"}):
 | 
				
			||||||
| 
						 | 
					@ -17,27 +17,36 @@ def DumpTensorToImage(tensor, name, forceSquare=True, scale=1.0, AutoContrast=Tr
 | 
				
			||||||
    if len(tensor.shape) == 3:
 | 
					    if len(tensor.shape) == 3:
 | 
				
			||||||
        channel = tensor.shape[0]
 | 
					        channel = tensor.shape[0]
 | 
				
			||||||
        x = math.ceil((channel) ** 0.5)
 | 
					        x = math.ceil((channel) ** 0.5)
 | 
				
			||||||
        tensor = F.pad(tensor, (0, 0, 0, 0, 0, x * x - channel), mode="constant", value=0)
 | 
					        calc = tensor.reshape((channel, tensor.shape[1] * tensor.shape[2]))
 | 
				
			||||||
        calc = tensor.reshape((x * x, tensor.shape[1] * tensor.shape[2]))
 | 
					        if not Contrast:
 | 
				
			||||||
        if AutoContrast:
 | 
					 | 
				
			||||||
            tensormax = calc.max(1)[0]
 | 
					            tensormax = calc.max(1)[0]
 | 
				
			||||||
            tensormin = calc.min(1)[0]
 | 
					            tensormin = calc.min(1)[0]
 | 
				
			||||||
            calc = calc.transpose(1, 0)
 | 
					        else:
 | 
				
			||||||
            calc = ((calc - tensormin) / (tensormax - tensormin)) * 255
 | 
					            tensormax = Contrast[1]
 | 
				
			||||||
            calc = calc.transpose(1, 0)
 | 
					            tensormin = Contrast[0]
 | 
				
			||||||
 | 
					        calc = calc.transpose(1, 0)
 | 
				
			||||||
 | 
					        calc = ((calc - tensormin) / (tensormax - tensormin)) * 255.0
 | 
				
			||||||
 | 
					        calc = calc.transpose(1, 0)
 | 
				
			||||||
 | 
					        calc = calc.reshape((channel, tensor.shape[1], tensor.shape[2]))
 | 
				
			||||||
 | 
					        if not GridValue:
 | 
				
			||||||
 | 
					            GridValue = 128.0
 | 
				
			||||||
 | 
					        calc = F.pad(calc, (0, 0, 0, 0, 0, x * x - channel), mode="constant", value=GridValue)
 | 
				
			||||||
        calc = calc.reshape((x, x, tensor.shape[1], tensor.shape[2]))
 | 
					        calc = calc.reshape((x, x, tensor.shape[1], tensor.shape[2]))
 | 
				
			||||||
        calc = F.pad(calc, (0, 1, 0, 1, 0, 0), mode="constant", value=GridValue)
 | 
					        calc = F.pad(calc, (0, 1, 0, 1, 0, 0), mode="constant", value=GridValue)
 | 
				
			||||||
        tensor = calc.permute((0, 2, 1, 3))
 | 
					        tensor = calc.permute((0, 2, 1, 3))
 | 
				
			||||||
        tensor = tensor.reshape((x * tensor.shape[1], x * tensor.shape[3]))
 | 
					        tensor = tensor.reshape((x * tensor.shape[1], x * tensor.shape[3]))
 | 
				
			||||||
        DumpTensorToImage(tensor, name, forceSquare=False, scale=scale, AutoContrast=False)
 | 
					        DumpTensorToImage(tensor, name, forceSquare=False, scale=scale, Contrast=[0.0, 255.0], GridValue=GridValue)
 | 
				
			||||||
        return
 | 
					        return
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    tensor = tensor.float()
 | 
					    tensor = tensor.float()
 | 
				
			||||||
    if AutoContrast:
 | 
					    if not Contrast:
 | 
				
			||||||
        maxv = torch.max(tensor)
 | 
					        maxv = torch.max(tensor)
 | 
				
			||||||
        minv = torch.min(tensor)
 | 
					        minv = torch.min(tensor)
 | 
				
			||||||
        tensor = ((tensor - minv) / (maxv - minv)) * 255
 | 
					    else:
 | 
				
			||||||
    img = tensor.byte().cpu().numpy()
 | 
					        maxv = Contrast[1]
 | 
				
			||||||
 | 
					        minv = Contrast[0]
 | 
				
			||||||
 | 
					    tensor = ((tensor - minv) / (maxv - minv)) * 255.0
 | 
				
			||||||
 | 
					    img = tensor.detach().cpu().numpy()
 | 
				
			||||||
    srp = img.shape
 | 
					    srp = img.shape
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if len(srp) == 1:  # 1D的数据自动折叠成2D图像
 | 
					    if len(srp) == 1:  # 1D的数据自动折叠成2D图像
 | 
				
			||||||
| 
						 | 
					@ -51,13 +60,21 @@ def DumpTensorToImage(tensor, name, forceSquare=True, scale=1.0, AutoContrast=Tr
 | 
				
			||||||
    if scale != 1.0:
 | 
					    if scale != 1.0:
 | 
				
			||||||
        img = cv2.resize(img, [int(srp[0] * scale), int(srp[1] * scale)])
 | 
					        img = cv2.resize(img, [int(srp[0] * scale), int(srp[1] * scale)])
 | 
				
			||||||
        srp = img.shape
 | 
					        srp = img.shape
 | 
				
			||||||
    cv2.imwrite(name, img)
 | 
					
 | 
				
			||||||
 | 
					    img = img * (-1)
 | 
				
			||||||
 | 
					    img = img + 255
 | 
				
			||||||
 | 
					    img[img < 0] = 0
 | 
				
			||||||
 | 
					    img = np.nan_to_num(img, nan=0.0)
 | 
				
			||||||
 | 
					    img[img > 255] = 255
 | 
				
			||||||
 | 
					    imgs = img.astype(np.uint8)
 | 
				
			||||||
 | 
					    imgs = cv2.applyColorMap(imgs, cv2.COLORMAP_JET)
 | 
				
			||||||
 | 
					    cv2.imwrite(name, imgs)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def DumpTensorToLog(tensor, name="log"):
 | 
					def DumpTensorToLog(tensor, name="log"):
 | 
				
			||||||
    shape = tensor.shape
 | 
					    shape = tensor.shape
 | 
				
			||||||
    f = open(name, "w")
 | 
					    f = open(name, "w")
 | 
				
			||||||
    data = tensor.reshape([-1]).float().cpu().numpy().tolist()
 | 
					    data = tensor.reshape([-1]).float().cpu().detach().numpy().tolist()
 | 
				
			||||||
    for d in data:
 | 
					    for d in data:
 | 
				
			||||||
        f.writelines("%s" % d + os.linesep)
 | 
					        f.writelines("%s" % d + os.linesep)
 | 
				
			||||||
    f.close()
 | 
					    f.close()
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
		 Before Width: | Height: | Size: 2.8 KiB After Width: | Height: | Size: 6.4 KiB  | 
| 
		 Before Width: | Height: | Size: 191 B After Width: | Height: | Size: 648 B  | 
| 
		 Before Width: | Height: | Size: 187 B After Width: | Height: | Size: 698 B  | 
| 
		 Before Width: | Height: | Size: 1020 B After Width: | Height: | Size: 1.6 KiB  | 
| 
		 Before Width: | Height: | Size: 2.0 KiB After Width: | Height: | Size: 4.8 KiB  | 
| 
		 Before Width: | Height: | Size: 1.8 KiB After Width: | Height: | Size: 4.2 KiB  | 
| 
		 Before Width: | Height: | Size: 84 B After Width: | Height: | Size: 109 B  | 
| 
		 Before Width: | Height: | Size: 2.4 KiB After Width: | Height: | Size: 3.4 KiB  | 
| 
		 Before Width: | Height: | Size: 1.1 KiB After Width: | Height: | Size: 2.0 KiB  | 
| 
		 Before Width: | Height: | Size: 320 B After Width: | Height: | Size: 544 B  | 
| 
						 | 
					@ -14,11 +14,11 @@ torch.manual_seed(seed)
 | 
				
			||||||
torch.cuda.manual_seed_all(seed)
 | 
					torch.cuda.manual_seed_all(seed)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 | 
					device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 | 
				
			||||||
device = torch.device("mps")
 | 
					# device = torch.device("mps")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Hyper-parameters
 | 
					# Hyper-parameters
 | 
				
			||||||
num_epochs = 1
 | 
					num_epochs = 1
 | 
				
			||||||
batch_size = 1
 | 
					batch_size = 256
 | 
				
			||||||
learning_rate = 0.001
 | 
					learning_rate = 0.001
 | 
				
			||||||
 | 
					
 | 
				
			||||||
transform = transforms.Compose([transforms.ToTensor()])
 | 
					transform = transforms.Compose([transforms.ToTensor()])
 | 
				
			||||||
| 
						 | 
					@ -32,17 +32,17 @@ test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, s
 | 
				
			||||||
class ConvNet(nn.Module):
 | 
					class ConvNet(nn.Module):
 | 
				
			||||||
    def __init__(self):
 | 
					    def __init__(self):
 | 
				
			||||||
        super(ConvNet, self).__init__()
 | 
					        super(ConvNet, self).__init__()
 | 
				
			||||||
        self.conv1 = nn.Conv2d(1, 8, 3, 1, 1)
 | 
					        self.conv1 = nn.Conv2d(1, 8, 5, 1, 0)
 | 
				
			||||||
        self.pool = nn.MaxPool2d(2, 2)
 | 
					        self.pool = nn.MaxPool2d(2, 2)
 | 
				
			||||||
        self.conv2 = nn.Conv2d(8, 8, 5)
 | 
					        self.conv2 = nn.Conv2d(8, 8, 5, 1, 0)
 | 
				
			||||||
        self.fc1 = nn.Linear(8 * 5 * 5, 10)
 | 
					        self.fc1 = nn.Linear(8 * 4 * 4, 10)
 | 
				
			||||||
        # self.fc2 = nn.Linear(120, 84)
 | 
					        # self.fc2 = nn.Linear(120, 84)
 | 
				
			||||||
        # self.fc3 = nn.Linear(84, 10)
 | 
					        # self.fc3 = nn.Linear(84, 10)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def forward(self, x):
 | 
					    def forward(self, x):
 | 
				
			||||||
        x = self.pool(F.relu(self.conv1(x)))
 | 
					        x = self.pool(F.relu(self.conv1(x)))
 | 
				
			||||||
        x = self.pool(F.relu(self.conv2(x)))
 | 
					        x = self.pool(F.relu(self.conv2(x)))
 | 
				
			||||||
        x = x.view(-1, 8 * 5 * 5)
 | 
					        x = x.view(-1, 8 * 4 * 4)
 | 
				
			||||||
        # x = F.relu(self.fc1(x))
 | 
					        # x = F.relu(self.fc1(x))
 | 
				
			||||||
        # x = F.relu(self.fc2(x))
 | 
					        # x = F.relu(self.fc2(x))
 | 
				
			||||||
        # x = self.fc3(x)
 | 
					        # x = self.fc3(x)
 | 
				
			||||||
| 
						 | 
					@ -51,12 +51,16 @@ class ConvNet(nn.Module):
 | 
				
			||||||
        return x
 | 
					        return x
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def printFector(self, x, label):
 | 
					    def printFector(self, x, label):
 | 
				
			||||||
        show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]).cpu(), "input_image.png")
 | 
					        show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]), "input_image.png", Contrast=[0, 1.0])
 | 
				
			||||||
 | 
					        # show.DumpTensorToLog(x, "input_image.log")
 | 
				
			||||||
        x = self.conv1(x)
 | 
					        x = self.conv1(x)
 | 
				
			||||||
        w = self.conv1.weight
 | 
					        w = self.conv1.weight
 | 
				
			||||||
        show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]).cpu(), "conv1_weight.png")
 | 
					        show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]), "conv1_weight.png", Contrast=[-1.0, 1.0])
 | 
				
			||||||
 | 
					        # show.DumpTensorToLog(w, "conv1_weight.log")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]), "conv1_output.png", Contrast=[-1.0, 1.0])
 | 
				
			||||||
 | 
					        # show.DumpTensorToLog(x, "conv1_output.png")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]).cpu(), "conv1_output.png")
 | 
					 | 
				
			||||||
        x = self.pool(F.relu(x))
 | 
					        x = self.pool(F.relu(x))
 | 
				
			||||||
        x = self.conv2(x)
 | 
					        x = self.conv2(x)
 | 
				
			||||||
        w = self.conv2.weight
 | 
					        w = self.conv2.weight
 | 
				
			||||||
| 
						 | 
					@ -64,10 +68,10 @@ class ConvNet(nn.Module):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]).cpu(), "conv2_output.png")
 | 
					        show.DumpTensorToImage(x.view(-1, x.shape[2], x.shape[3]).cpu(), "conv2_output.png")
 | 
				
			||||||
        x = self.pool(F.relu(x))
 | 
					        x = self.pool(F.relu(x))
 | 
				
			||||||
        x = x.view(-1, 8 * 5 * 5)
 | 
					        x = x.view(-1, 8 * 4 * 4)
 | 
				
			||||||
        x = self.fc1(x)
 | 
					        x = self.fc1(x)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        show.DumpTensorToImage(self.fc1.weight.view(-1, 10, 10).permute(2, 0, 1).cpu(), "fc_weight.png")
 | 
					        show.DumpTensorToImage(self.fc1.weight.view(-1, 16, 8).permute(2, 0, 1), "fc_weight.png")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        show.DumpTensorToImage(x.view(-1).cpu(), "fc_output.png")
 | 
					        show.DumpTensorToImage(x.view(-1).cpu(), "fc_output.png")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -79,8 +83,8 @@ class ConvNet(nn.Module):
 | 
				
			||||||
        w = self.conv1.weight.grad
 | 
					        w = self.conv1.weight.grad
 | 
				
			||||||
        show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]).cpu(), "conv1_weight_grad.png")
 | 
					        show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]).cpu(), "conv1_weight_grad.png")
 | 
				
			||||||
        w = self.conv2.weight.grad
 | 
					        w = self.conv2.weight.grad
 | 
				
			||||||
        show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]).cpu(), "conv2_weight_grad.png")
 | 
					        show.DumpTensorToImage(w.view(-1, w.shape[2], w.shape[3]), "conv2_weight_grad.png")
 | 
				
			||||||
        show.DumpTensorToImage(self.fc1.weight.grad.view(-1, 10, 10).permute(2, 0, 1).cpu(), "fc_weight_grad.png")
 | 
					        show.DumpTensorToImage(self.fc1.weight.grad.view(-1, 16, 8).permute(2, 0, 1), "fc_weight_grad.png")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
model = ConvNet().to(device)
 | 
					model = ConvNet().to(device)
 | 
				
			||||||
| 
						 | 
					@ -105,9 +109,10 @@ for epoch in range(num_epochs):
 | 
				
			||||||
        loss.backward()
 | 
					        loss.backward()
 | 
				
			||||||
        optimizer.step()
 | 
					        optimizer.step()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        if (i + 1) % 2000 == 0:
 | 
					        if (i + 1) % 100 == 0:
 | 
				
			||||||
            print(f"Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.4f}")
 | 
					            print(f"Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.4f}")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False)
 | 
				
			||||||
for images, labels in test_loader:
 | 
					for images, labels in test_loader:
 | 
				
			||||||
    images = images.to(device)
 | 
					    images = images.to(device)
 | 
				
			||||||
    labels = labels.to(device)
 | 
					    labels = labels.to(device)
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||