Refine Code.
This commit is contained in:
parent
68417fdc12
commit
c462129ba6
|
@ -19,6 +19,7 @@ from transformers.configuration_utils import PretrainedConfig
|
|||
from transformers.generation import GenerationConfig
|
||||
|
||||
from chatglm import ChatGLMConfig
|
||||
from tools import show
|
||||
|
||||
WEIGHTS_INDEX_NAME = "pytorch_model.bin.index.json"
|
||||
|
||||
|
@ -502,9 +503,7 @@ class ChatGLMModel(nn.Module):
|
|||
# Rotary positional embeddings
|
||||
rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
|
||||
|
||||
from tools import show
|
||||
|
||||
show.DumpTensorToImage(rotary_pos_emb[:, :, 0], "plot.png", scale=0.1)
|
||||
# show.DumpTensorToImage(rotary_pos_emb[:, :, 0], "rotary_pos_emb.png", scale=0.1)
|
||||
|
||||
if position_ids is not None:
|
||||
rotary_pos_emb = rotary_pos_emb[position_ids]
|
||||
|
@ -753,9 +752,8 @@ class ChatGLMForConditionalGeneration(nn.Module):
|
|||
return_dict=True,
|
||||
output_hidden_states=output_hidden_states,
|
||||
)
|
||||
next_token_logits = logits[:, -1, :]
|
||||
next_token_scores = next_token_logits
|
||||
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
||||
next_token_logits = logits[:, 0, :]
|
||||
probs = nn.functional.softmax(next_token_logits, dim=-1)
|
||||
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
||||
|
||||
# finished sentences should have their next token be a padding token
|
||||
|
|
Binary file not shown.
After Width: | Height: | Size: 262 KiB |
|
@ -21,32 +21,3 @@ def DumpTensorToImage(tensor, name, autoPad=True, scale=1.0):
|
|||
img = cv2.resize(img, [int(srp[0] * scale), int(srp[1] * scale)])
|
||||
srp = img.shape
|
||||
cv2.imwrite(name, img)
|
||||
|
||||
|
||||
# def DumpTensorToImage(tensor, name, autoPad=True, scale=1.0):
|
||||
# if len(tensor.shape) != 2:
|
||||
# raise ("Error input dims")
|
||||
# tensor = tensor.float()
|
||||
# maxv = torch.max(tensor)
|
||||
# minv = torch.min(tensor)
|
||||
# tensor = (((tensor - minv) / (maxv - minv)) * 256).byte().cpu()
|
||||
# srp = tensor.shape
|
||||
# if autoPad and (max(srp) / min(srp) > 16):
|
||||
# if srp[0] == min(srp):
|
||||
# tensor = F.pad(tensor, [max(srp) - min(srp), 0], "replicate")
|
||||
# else:
|
||||
# tensor = F.pad(tensor, [0, max(srp) - min(srp)], "replicate")
|
||||
# srp = tensor.shape
|
||||
|
||||
# tensor = tensor.unsqueeze(0)
|
||||
# if scale != 1.0:
|
||||
# tensor = Vision.resize(tensor, [int(srp[0] * scale), int(srp[1] * scale)])
|
||||
# tensor = tensor.view([int(srp[0] * scale), int(srp[1] * scale)])
|
||||
# srp = tensor.shape
|
||||
|
||||
# w = 1024 if max(srp) > 1024 else max(srp)
|
||||
# scale = max(srp) / w
|
||||
# # img = px.imshow(tensor)
|
||||
# # img.write_image(name)
|
||||
# cv2.imwrite(name, tensor.numpy())
|
||||
# cv2.CreateMat(name, tensor.numpy())
|
||||
|
|
Loading…
Reference in New Issue