Regine minist unsuper.
This commit is contained in:
parent
f74a5d29bd
commit
cdee69bf54
|
@ -106,6 +106,31 @@ class ConvNet(nn.Module):
|
|||
)
|
||||
|
||||
|
||||
def RandomImage():
|
||||
images = torch.ones((1, 1, 5, 5), device=device)
|
||||
type = random.randint(0, 3)
|
||||
if type == 0:
|
||||
rand = random.randint(0, 4)
|
||||
images[:, :, rand, :] = images[:, :, rand, :] * 0.5
|
||||
if type == 1:
|
||||
rand = random.randint(0, 4)
|
||||
images[:, :, :, rand] = images[:, :, :, rand] * 0.5
|
||||
if type == 2:
|
||||
images[:, :, 0, 0] = images[:, :, 0, 0] * 0.5
|
||||
images[:, :, 1, 1] = images[:, :, 1, 1] * 0.5
|
||||
images[:, :, 2, 2] = images[:, :, 2, 2] * 0.5
|
||||
images[:, :, 3, 3] = images[:, :, 3, 3] * 0.5
|
||||
images[:, :, 4, 4] = images[:, :, 4, 4] * 0.5
|
||||
if type == 3:
|
||||
randx = random.randint(1, 3)
|
||||
randy = random.randint(1, 3)
|
||||
images[:, :, randx, randy] = images[:, :, randx, randy] * 0.5
|
||||
images[:, :, randx, randy + 1] = images[:, :, randx, randy + 1] * 0.5
|
||||
images[:, :, randx, randy - 1] = images[:, :, randx, randy - 1] * 0.5
|
||||
images[:, :, randx + 1, randy] = images[:, :, randx + 1, randy] * 0.5
|
||||
images[:, :, randx - 1, randy] = images[:, :, randx - 1, randy] * 0.5
|
||||
return images
|
||||
|
||||
model = ConvNet().to(device)
|
||||
model.train()
|
||||
|
||||
|
@ -115,29 +140,7 @@ n_total_steps = len(train_loader)
|
|||
for epoch in range(epochs):
|
||||
for i, (images, labels) in enumerate(train_loader):
|
||||
images = images.to(device)
|
||||
|
||||
# images = torch.ones((1, 1, 5, 5), device=device)
|
||||
# type = random.randint(0, 3)
|
||||
# if type == 0:
|
||||
# rand = random.randint(0, 4)
|
||||
# images[:, :, rand, :] = images[:, :, rand, :] * 0.5
|
||||
# if type == 1:
|
||||
# rand = random.randint(0, 4)
|
||||
# images[:, :, :, rand] = images[:, :, :, rand] * 0.5
|
||||
# if type == 2:
|
||||
# images[:, :, 0, 0] = images[:, :, 0, 0] * 0.5
|
||||
# images[:, :, 1, 1] = images[:, :, 1, 1] * 0.5
|
||||
# images[:, :, 2, 2] = images[:, :, 2, 2] * 0.5
|
||||
# images[:, :, 3, 3] = images[:, :, 3, 3] * 0.5
|
||||
# images[:, :, 4, 4] = images[:, :, 4, 4] * 0.5
|
||||
# if type == 3:
|
||||
# randx = random.randint(1, 3)
|
||||
# randy = random.randint(1, 3)
|
||||
# images[:, :, randx, randy] = images[:, :, randx, randy] * 0.5
|
||||
# images[:, :, randx, randy + 1] = images[:, :, randx, randy + 1] * 0.5
|
||||
# images[:, :, randx, randy - 1] = images[:, :, randx, randy - 1] * 0.5
|
||||
# images[:, :, randx + 1, randy] = images[:, :, randx + 1, randy] * 0.5
|
||||
# images[:, :, randx - 1, randy] = images[:, :, randx - 1, randy] * 0.5
|
||||
# images = RandomImage()
|
||||
|
||||
outputs = model.forward_unsuper(images)
|
||||
outputs = outputs.permute(0, 2, 3, 1) # 64 8 24 24 -> 64 24 24 8
|
||||
|
|
Loading…
Reference in New Issue